St. Jude Children's **Research Hospital**

Finding cures. Saving children.

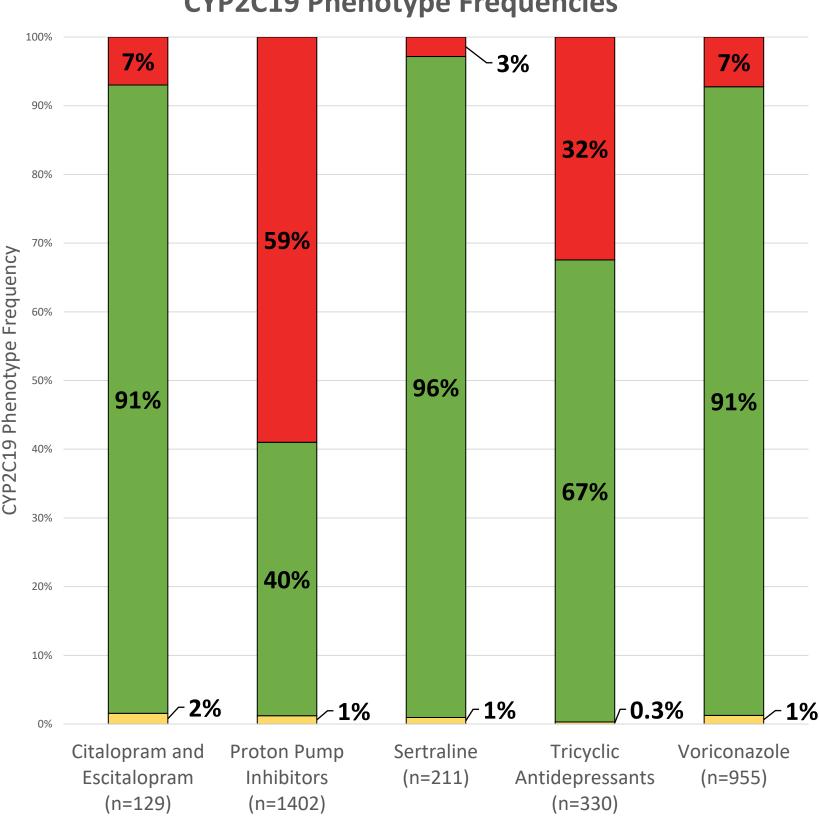
Spill the Genes! Frequency of high-risk phenotypes and pharmacogenomically actionable medication use in pediatric patients with cancer

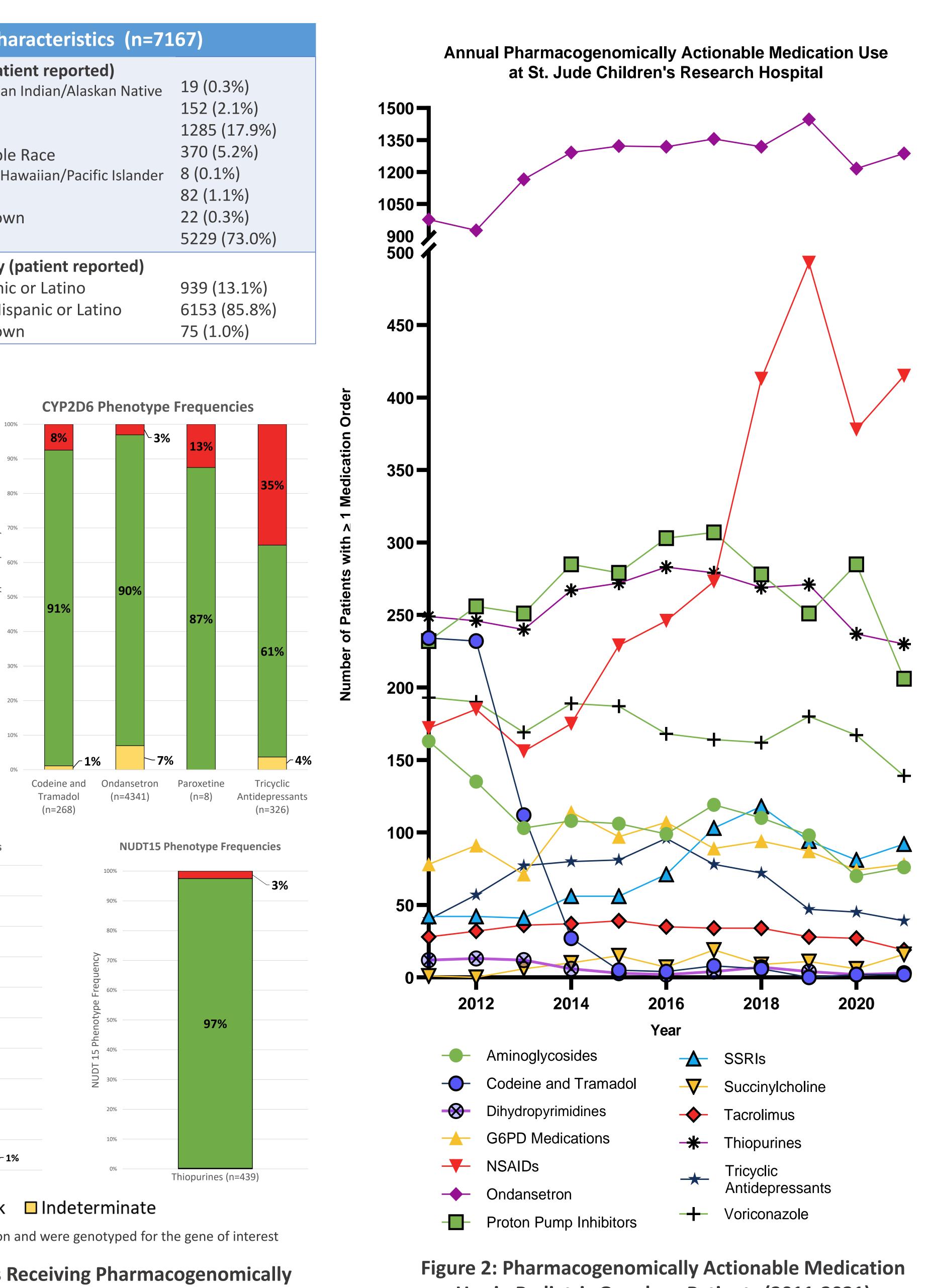
Kayla M Thibodaux, PharmD, MBA¹; Kristine R. Crews, PharmD¹; Allison W. Bragg, PharmD¹; Melissa S. Bourque, PharmD¹; ¹Department of Pharmacy and Pharmaceutical Sciences; ²Office of Quality & Patient Safety; St. Jude Children's Research Hospital, Memphis, TN

BACKGROUND

- Patients with cancer are frequently prescribed medications with pharmacogenomic actionability.
- Over 95% of patients who have undergone pharmacogenomic testing have at least one reported high-risk result.
- There are few publications that describe the frequencies of pharmacogenomically actionable medication use and high-risk pharmacogenomic phenotypes in pediatric oncology.
- Understanding the prevalence of variant frequencies and the use of pharmacogenomically actionable medications in a real-life cohort of pediatric oncology patients will add to existing literature, guide implementation efforts, and may increase adoption in clinical practice.

PURPOSE


• Describe the overall use of pharmacogenomically actionable medications and frequencies of pharmacogenomic phenotypes in patients with cancer treated at St. Jude Children's Research Hospital (St. Jude).


METHODS

- This is a descriptive, cross-sectional study evaluating pharmacogenomic test results and medication use at St. Jude between January 2011 and December 2021.
- Patients at St. Jude are enrolled on the institutional preemptive pharmacogenomic testing protocol, **PG4KDS** (<u>www.stjude.org/pg4kds</u>).
- Pharmacogenes and medications were selected based on frequency of use in the pediatric oncology population and availability of a CPIC guideline.
- Data for 12 pharmacogenes (CACNA1S, CYP2B6, *CYP2C9, CYP2C19, CYP2D6, CYP3A5, DPYD, G6PD, MT-RNR1, NUDT15, RYR1, TPMT*) and 31 pharmacogenomically actionable medications were assessed.
- Patients who received a pharmacogenomically actionable medication and had a diagnosis of an oncologic disorder were included in the analysis.

RESULTS

Table 1: Patient Demographics and Characteristics (n=7167)					
Age, Years (median, range)	7.7 (0.0-51.8)	Race (patient reported)			
Gender (patient reported) Female Male	3343 (46.6%) 3824 (53.4%)	American Indian/Alaskan Native Asian Black Multiple Race Native Hawaiian/Pacific Islander Other Unknown White	19 (0.3%) 152 (2.1%) 1285 (17.9 370 (5.2%)		
Genotype Status Genotyped Not Genotyped	4535 (63.3%) 2632 (36.7%)		8 (0.1%) 82 (1.1%) 22 (0.3%) 5229 (73.0		
Oncology Diagnosis Leukemia/Lymphoma Solid Tumor Brain Tumor	2500 (34.9%) 2477 (34.5%) 2190 (30.6%)	Ethnicity (patient reported) Hispanic or Latino Non-Hispanic or Latino Unknown	939 (13.1% 6153 (85.8 75 (1.0%)		

Actionable Medications

Use in Pediatric Oncology Patients (2011-2021)

CONCLUSIONS

- Ondansetron, nonsteroidal anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), thiopurines, and voriconazole were the most frequently prescribed medications with pharmacogenomic associations.
- The frequency of high-risk phenotypes for CYP2D6, CYP2C19, CYP2C9, TPMT, and NUDT15 ranged from 2% to 59% and varied by medication.
- The widespread use of pharmacogenomically actionable medications and frequency of high-risk alleles supports the implementation of preemptive genotyping in the treatment of pediatric oncology patients.

FUNDING

Supported, in part, by the National Institutes of Health Cancer Center Support (CORE) grant P30 CA021765 and the American Lebanese Syrian Associated Charities (ALSAC). The funders had no role in study design or preparation of this project.

REFERENCES

- Haidar CE, Crews KR, Hoffman JM, Relling MV, Caudle KE. Advancing Pharmacogenomics from Single-Gene to Preemptive Testing. Annu Rev Genomics Hum Genet. 2022;23:449-473.
- Hicks JK, El Rouby N, Ong HH, et al. Opportunity for Genotype-Guided Prescribing Among Adult Patients in 11 US Health Systems. Clin Pharmacol *Ther.* 2021;110(1):179-188.
- Nichols D, Arnold S, Weiss HL, et al. Pharmacogenomic potential in advanced cancer patients. Am J Health Syst Pharm. 2019;76(7):415-423.
- Shugg T, Ly RC, Rowe EJ, et al. Clinical Opportunities for Germline Pharmacogenetics and Management of Drug-Drug Interactions in Patients With Advanced Solid Cancers. JCO Precis Oncol. 2022;6:e2100312.
- Clinical Pharmacogenetics Implementation Consortium: <u>https://cpicpgx.org/</u>
- 6. **PG4KDS** website: <u>www.stjude.org/pg4kds</u>

MORE INFORMATION

Supplemental Table 1: Implemented Genes and corresponding medications relevant to oncology patients at St. Jude Children's Research Hospital

Gene	Assoc
CACNA1S	Succinylcholine
CYP2B6	Sertraline
<i>CYP2C19</i>	Amitriptyline, Citalopra
	Imipramine, Lansopraz
	Sertraline, Voriconazol
<i>CYP2C9</i>	Celecoxib, Ibuprofen, N
CYP2D6	Amitriptyline, Clomipra
	Ondansetron, Paroxeti
СҮРЗА5	Tacrolimus
DPYD	Capecitabine, Fluorour
G6PD	Dapsone, Methylene B
MT-RNR1	Amikacin, Gentamicin,
NUDT15	Azathioprine, Mercapto
RYR1	Succinylcholine
TPMT	Azathioprine, Mercapto

Supplemental Table 2: Drugs and Drug Classes

Line Item	Medications Included
Tricyclic	Amitriptyline, Clomipramine, Imipramine
Antidepressants	
Proton Pump	Lansoprazole, Omeprazole, Pantoprazole
Inhibitors	
Aminoglycosides	Amikacin, Gentamicin, Tobramycin
NSAIDS	Celecoxib, Ibuprofen, Meloxicam
Opioid Analgesics	Codeine, Tramadol
Thiopurines	Azathioprine, Mercaptopurine, Thioguanine
Dihydropyridines	Capecitabine, Fluorouracil
SSRIs	Citalopram, Escitalopram, Sertraline, Paroxetine
Ondansetron	Ondansetron
Tacrolimus	Tacrolimus
Dapsone	Dapsone
Methylene Blue	Methylene Blue
Rasburicase	Rasburicase
Nitrofurantoin	Nitrofurantoin
Voriconazole	Voriconazole
Succinylcholine	Succinylcholine

ciated Medications

ram, Clomipramine, Escitalopram, zole, Omeprazole, Pantoprazole,

Meloxicam

amine, Codeine, Imipramine,

ine, Tramadol

racil

Blue, Nitrofurantoin, Rasburicase Tobramycin topurine, Thioguanine

topurine, Thioguanine

Medication	High-Risk Phenotypes
Amikacin	MT-RNR1 Increased Risk of Aminoglyc
Amitriptyline	CYP2D6 UM, CYP2D6 IM, CYP2D6 PM,
	CYP2C19 PM
Azathioprine	TPMT IM, TPMT PM, NUDT15 IM, NUD
Capecitabine	DPYD IM, DPYD PM
Celecoxib	CYP2C9 PM
Citalopram	CYP2C19 UM, CYP2C19 PM
Clomipramine	CYP2D6 UM, CYP2D6 IM, CYP2D6 PM,
	CYP2C19 PM
Codeine	CYP2D6 UM, CYP2D6 PM
Dapsone	G6PD Deficient, G6PD Deficient with C
Escitalopram	CYP2C19 UM, CYP2C19 PM
Fluorouracil	DPYD IM, DPYD PM
Gentamicin	MT-RNR1 Increased Risk of Aminoglyc
Ibuprofen	CYP2C9 PM
Imipramine	CYP2D6 UM, CYP2D6 IM, CYP2D6 PM,
	CYP2C19 PM
Lansoprazole	CYP2C19 UM, CYP2C19 RM, CYP2C19
Meloxicam	CYP2C9 IM, CYP2C9 PM
Mercaptopurine	TPMT IM, TPMT PM, NUDT15 IM, NUD
Methylene Blue	G6PD Deficient, G6PD Deficient with C
Nitrofurantoin	G6PD Deficient, G6PD Deficient with C
Omeprazole	CYP2C19 UM, CYP2C19 RM, CYP2C19
Ondansetron	CYP2D6 UM
Pantoprazole	CYP2C19 UM, CYP2C19 RM, CYP2C19
Paroxetine	CYP2D6 UM, CYP2D6 PM
Rasburicase	G6PD Deficient, G6PD Deficient with C
Sertraline	CYP2C19 PM, CYP2B6 PM
Succinylcholine	CACNA1S Malignant Hyperthermia Sus
	Hyperthermia Susceptibility
Tacrolimus	CYP3A5 NM, CYP3A5 IM
Thioguanine	TPMT IM, TPMT PM, NUDT15 IM, NUD
Tobramycin	MT-RNR1 Increased Risk of Aminoglyc
Tramadol	CYP2D6 UM, CYP2D6 PM
Voriconazole	CYP2C19 UM, CYP2C19 PM

Supplemental Table 3: "High Risk" Phenotype Combination for each Medication

coside-Induced Ototoxicity CYP2C19 UM, CYP2C19 RM,

DT15 PM

, CYP2C19 UM, CYP2C19 RM,

CNHSA, G6PD Variable

coside-Induced Ototoxicity

CYP2C19 UM, CYP2C19 RM,

IM, CYP2C19 PM

DT15 PM

CNHSA, G6PD Variable

CNHSA, G6PD Variable IM, CYP2C19 PM

IM, CYP2C19 PM

CNHSA, G6PD Variable

sceptibility, RYR1 Malignant

DT15 PM coside-Induced Ototoxicity