Success Stories

Researchers at St. Jude Children’s Research Hospital tirelessly and brilliantly work to advance cures for, and prevent, pediatric catastrophic diseases through research and treatment; and in their work they make discoveries beyond our core mission. These discoveries require further development, so our office endeavors to license them to companies who will turn them into successful products. Here are just a few examples of discoveries licensed from St. Jude that have been incorporated into products or processes that are now deployed in the marketplace.


St. Jude's Contribution to Bel-Art Labs Flowmi

Flowmi Video 2014

St. Jude Children’s Research Hospital is known for performing groundbreaking and life changing research; and the Office of Technology Licensing endeavors to facilitate the development of innovations originating during this research into products that can benefit St. Jude patients and the public at large. Sometimes, small things can make a big difference, as is the case with Flowmi™ Cell Strainers, a filter co-designed by Dr. Steven Zatechka at St. Jude and researchers Bel-Art Labs to improve flow cytometry. Flowmi is a fast and efficient cell strainer that joins to the end a micropipette tip and allows users to strain debris from a sample just prior to analysis by flow cytometers. These filters are designed to preserve sample volume and avoid clogs, and are recommended for use with samples having a maximum concentration of 2MM cells/ml. Find out more about Flowmi on their website: http://www.belart.com/flowmi/


St. Jude's Plasmid Rescue System Contribution to FluMist

Flumist video 2014

St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer; however, research of a far more common yet deadly disease also thrives here. For many years, St. Jude has been a global leader in the study of influenza because cancer patients undergoing treatments that diminish the immune system are at much more serious risk of death from infectious diseases like influenza; however, the impact of this disease extends far beyond the walls of St. Jude.


St. Jude’s Contributions to Diagnostics and Antibodies

KIR video 2013

KIR/KIR-Ligand Assay predicts the success of bone marrow transplants and prevents the return of cancer in transplant recipients. As part of the licensing agreement, Insight Genetics will optimize the test for rapid, high-capacity use and make it broadly available to physicians and their patients as well as donor registries (SJ-10-0024).

PRO-PredictRx TPMT® is a genetic assay doctors can use to help determine the correct dosage of thiopurines for their patients. The Prometheus Laboratories assay uses a discovery by Drs. William Evans and Eugene Krynetski of three mutations in the thiopurine S-methyltransferase (TPMT) gene that leave patients with a decreased ability to metabolize standard doses of thiopurines such as the leukemia drug 6-mercaptopurine. Patients with decreased ability to metabolize thiopurines can be identified by this assay and receive substantially the same benefit from reduced dosages of these drugs while avoiding toxic side effects.

FastImmune Cytokine System® was developed by BD Biosciences to rapidly analyze human lymphocyte activation and detect intracellular cytokines by flow cytometry. It contains an anti-CD19 monoclonal antibody (SJ25C1) developed at St. Jude. Determining intracellular cytokine levels in response to antigen activation can be used in the study of autoimmune diseases, HIV, tumor vaccine development, allergies and infectious diseases.

Oncomark 3-Color Oncomark Combinations® is an antibody cocktail from BD Biosciences used to study leukemia. In addition to the anti-CD19 monoclonal antibody (SJ25C1) developed at St. Jude which recognizes CD19 expressed on human B lymphocytes at most stages of maturation, this cocktail contains anti-CD79b, which is expressed at high levels in most B-cell disorders and either anti-kappa or anti-lamba which is present on neoplastic cells.


St. Jude’s Contribution to a New Class of Cancer Drugs

Xalkori video 2012

The ALK gene was discovered (SJ-93-0002) in the 1990s by St. Jude scientists searching for genes affected by a chromosomal change common in the cancer cells of pediatric patients with anaplastic large cell lymphoma (ALCL). This discovery led to issued patents that were licensed to develop therapeutics for treatment of adult lung cancers. So far two ALK inhibitor drugs have been approved by the US Food and Drug Administration (FDA). Over 200,000 new cases of lung cancer are diagnosed in the U.S. each year. Current estimates are approximately 3-5% (6,500 to 11,000) patients with non-small cell lung cancer carry the ALK rearrangement and may be candidates for treatment with the drugs:

In the news: