Clinical Implementation of Pharmacogenetics

Mary V. Relling, Pharm.D.

St. Jude Children's Research Hospital, Memphis, USA

NIH Pharmacogenomics Research Network

Pharmacogenetic Discovery vs implementation

- Discovery of host and treatment risk factors for adverse outcomes in ALL: relapse and adverse drug effects (osteonecrosis)
 - Better understand mechanism and means to avoid
 - Discover and validate tests for eventual clinical use
- Implement pharmacokinetic, pharmacodynamic, and pharmacogenetic tests for patient care

Discovery of pharmacogenetic genotype/phenotype associations is ongoing----but are there pharmacogenetic tests we should be implementing in the clinic now?

• When getting prescribing right is important

- Safety: drug has a narrow therapeutic index
- Efficacy: effective treatment of disease is important
- Dosing to pharmacodynamic effects is not readily titratable via other means
- Drug that needs a test has some advantages over other drugs that don't

- Safety: drug has a narrow therapeutic index
 - Difference between dose of drug needed to cause intended effect is not much lower than doses that can cause serious effects
 - e.g. cytotoxic anticancer drugs vs amoxicillin or levothyroxine
 - Unpredictable, non-dose related adverse effects
 - e.g. Stevens-Johnson syndrome and carbamazepine vs drowsiness from benzodiazepines

- Efficacy: effective treatment of disease is important life-saving
 - e.g. anticancer drugs, anticonvulsants vs antihistamines for seasonal allergies

- Dosing to pharmacodynamic effects is not readily titratable via other means
 - E.g. many anticancer drugs, depression, schizophrenia vs cholesterol, blood pressure, diabetes
 - Especially a problem when multiple drugs on board with overlapping toxicities

- Drug that needs a test has some advantages over other drugs that don't
 - e.g. codeine over morphine, ondansetron over granisetron

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

April 15, 1988

Pages 411-416

Codeine is the same as placebo to 10% of the population

Poulsen et al *Eur J Clin Pharm* 1996;51:289-95

And too active for 1-2% of the population

12% of the population should not take codeine based on CYP2D6

Why Bother with Codeine at All?

Finding cures. Saving children.

But genetic testing for this and other drugs remains extremely uncommon....

We are approaching implementation of clinical pharmacogenetics on 2 fronts

a **PharmGKB** & PGRN collaboration

Clinical Pharmacogenetics

Implementation Consortium

Finding cures. Saving children.

St. Jude Children's Research Hospital PG4KDS Protocol

Long-term goal: preemptive pharmacogenetic testing as the standard of care... for everyone All CPIC guidelines. Survey: top 3 challenges to implementing pharmacogenetics in the clinic

- 95% of respondents selected: "process required to translate genetic information into clinical actions"
- Next 2 responses
 - Genotype test interpretation (e.g. using genotype information to assign phenotype)
 - Providing recommendations for selecting the drug/gene pairs to implement

Clin Pharmacol Ther. 2011 89:464-7.

- formed in late 2009 as a shared project between PharmGKB and the PGRN
- CPIC guidelines are designed to help clinicians understand HOW available genetic test results should be used to optimize drug therapy.
 - Not WHETHER tests should be ordered.
- Key Assumption:
 - Clinical high-throughput and pre-emptive genotyping will become more widespread.
 - Clinicians will be faced with having patients' genotypes available even if they did not order test with drug in mind.

CPIC level A (high or moderate actionability) guideline genes (n=14) and drugs, Feb 2016

- *TPMT*
 - MP, TG, azathioprine
- CYP2D6
 - Codeine, tramadol, hydrocodone, oxycodone, TCAs
- CYP2C19
 - TCAs, clopidogrel, voriconazole
- VKORC1
 - warfarin
- CYP2C9
 - Warfarin, phenytoin
- HLA-B
 - Allopurinol, CBZ, abacavir, phenytoin

- CFTR
 - ivacaftor
- DPYD
 - 5FU, capecitabine, tegafur
- G6PD
 - rasburicase
- UGT1A1
 - Irinotecan, atazanavir
- SLCO1B1
 - simvastatin
- IFNL3 (IL28B)
 - interferon
- CYP3A5
 - Tacrolimus
- RYR1
 - NM blockers

https://www.pharmgkb.org/page/cpicGeneDrugPairs

Clinical Pharmacogenetics Implementation Consortium Guidelines for Thiopurine Methyltransferase Genotype and Thiopurine Dosing

MV Relling¹, EE Gardner¹, WJ Sandborn², K Schmiegelow^{3,4}, C-H Pui⁵, SW Yee⁶, CM Stein⁷, M Carrillo⁸, WE Evans¹ and TE Klein⁸

Clinical Pharmacogenetics Implementat Consortium Guidelines for Cytochrome P450-2C19 (*CYP2C19*) Genotype and Clopidogrel Therapy

SA Scott¹, K Sangkuhl², EE Gardner³, CM Stein^{4,5}, J-S Hulot^{6,7}, JA Johnson^{8,9,10}, DM Roden^{11,12}, TE Klein² and AR Shuldiner^{13,14}

Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Clinical Pharmacogenetics Implementation Genotypes and Warfarin Dosing Antigen-B Genotype and Allopurinol Dosing

JA Johnson¹, L Gong², M Whirl-Carrillo², BF Gage³, SA Scott⁴, CM Stein⁵, JL Anderson⁶, SE Kimm MTM Lee¹⁰, M Pirmohamed¹¹, M Wadelius¹², TE Klein² and RB Altman^{2,13}

MS Hershfield^{1,2}, JT Callaghan^{3,4,5}, W Tassaneeyakul⁶, T Mushiroda⁷, CF Thorn⁸, TE Klein⁸ and MTM Lee^{9,10,11}

Clinical Pharmacogenetics Implementat The Clinical Pharmacogenomics ImplemenConsortium Guidelines for *HLA-B* Genot Consortium: CPIC Guideline for *SLCO1B1* Abacavir Dosing and Simvastatin-Induced Myopathy

RA Wilke^{1,2}, LB Ramsey³, SG Johnson^{4,5}, WD Maxwell⁶, HL McLeod⁷, D Voora⁸, RM Krauss⁹, DM Roden^{1,2}, Q Feng^{1,2}, RM Cooper-DeHoff¹⁰, L Gong¹¹, TE Klein^{11,12}, M Wadelius¹³ and M Niemi¹⁴

Clinical Pharmacogenetics Implementation Consortium Guidelines for *HLA-B* Genotype and Carbamazepine Dosing

SG Leckband^{1,2}, JR Kelsoe^{1,2}, HM Dunnenberger³, AL George Jr⁴, E Tran¹, R Berger¹, DJ Müller^{5,6}, M Whirl-Carrillo⁷, KE Caudle³ and M Pirmohamed⁸

Ilinical Pharmacogenetics Implementation Ionsortium (CPIC) Guidelines for Codeine Therapy in the Context of *Cytochrome P450 2D6 CYP2D6*) Genotype

R Crews¹, A Gaedigk², HM Dunnenberger³, TE Klein⁴, DD Shen^{5,6}, JT Callaghan^{7,8}, ED Kharasch⁹ nd TC Skaar⁷

How do we impose some order on process of deciding what to implement in the clinic, and when?

Initial prioritization considerations for new gene/drug groups

(may change over time as evidence and experience accumulates)

Guidelines: 20 level A, 9 level B

20 level C

60-100 level D

Evidence considered for clinical implementation of pharmacogenetic testing: gene/drug specific

- Association of the genetic variation with drug effect----GWAS can contribute here
- randomized clinical studies of genetically-based prescribing outcomes versus "standard of care"
- pre-clinical and clinical studies linking pharmacologic effects or drug concentrations to genomic variation
- case reports
- *in vivo* PK or other functional studies
- *in vitro* functional studies

Evidence considered for clinical implementation of pharmacogenetic testing: extra gene/drug

- therapeutic index for the drug(s)
- severity of underlying disease
- consequences of suboptimal prescribing
- availability of genetic tests
- availability of and evidence for alternative therapy

Clopidogrel requires CYP2C19 to be activated in liver; CYP2C19 was candidate gene for clopidogrel's antiplatelet effect

Pharmgkb.org

GWAS for platelet aggregation response to clopidogrel confirmed importance of *CYP2C19* genetic variation

Shuldiner et al JAMA 2009

More CV events in those with CYP2C19*2 inactive alleles

Shuldiner et al JAMA 2009

Evidence considered for clinical implementation of pharmacogenetic testing: extra gene/drug

- therapeutic index for the drug(s)
 - Bleeding vs thrombosis
- severity of underlying disease
 - Stroke, myocardial infarction
- consequences of suboptimal prescribing
 - Death, serious morbidity
- availability of genetic tests
 - yes
- availability of and evidence for alternative therapy

– yes

Clinical Pharmacogenetics Implementation Consortium Guidelines for *CYP2C19* Genotype and Clopidogrel Therapy: 2013 Update

SA Scott¹, K Sangkuhl², CM Stein³, J-S Hulot^{4,5}, JL Mega⁶, DM Roden⁷, TE Klein², MS Sabatine⁶, JA Johnson^{8,9,10} and AR Shuldiner^{11,12}

Alternatives may be unclear: example CYP2D6 and tamoxifen

Lower disease-free survival in pts with breast CA treated with tamoxifen with CYP2D6 deficient genotype; but alternative therapy not clear (for some pts)

c/w tamoxifen being activated by CYP2D6

Goetz et al J Clin Oncol 23:9312-9318.

17 genes, 86 drugs with pharmacogeneticallybased prescribing

Number of current and planned CPIC genes, drugs and anticipated guidelines.	Genes	Drugs	Anticipated number of unique guidelines
Strong or Moderate prescribing action-CPIC level A	14	36	20 (14 published)
Optional prescribing actions-CPIC level B	7 ^a	50	9
No prescribing actions-CPIC level C	16 ^b	47	20
^a Currently this is 3 unique genes (four are already subjects of CPIC level A guidelines). ^b Currently this is 13 unique genes (three are also subject to CPIC level A or B guidelines for other drugs).			

There are approximately 1200 FDA-approved medications (~1450 new drugs but ~ 250 exits)

Kinch et al Drug Discovery Today • Volume 19, Number 8 • August 2014

How many gene/drug pairs should be used in the clinic now?

FDA-approved medications (n = 1.200)

Prescriptions in the United States (n = 4 billion)

http://www.pharmgkb. org/page/cpicGeneDrug Pairs

~ 1200 chemical

as drugs

Relling & Evans, Nature, 2015

99% of population has high-risk diplotype for at least one of 12 CPIC genes

Dunnenberger et al Ann Rev Pharm Tox 2015

Optimizing Drug Outcomes Through Pharmacogenetics: A Case for Preemptive Genotyping

JS Schildcrout^{1,2}, JC Denny^{3,4}, E Bowton⁵, W Gregg^{3,4}, JM Pulley⁵, MA Basford⁵, JD Cowan⁶, H Xu³, AH Ramirez⁴, DC Crawford⁷, MD Ritchie⁸, JF Peterson^{3,4,9}, DR Masys^{3,4}, RA Wilke^{4,10} and DM Roden^{4,5,10,11}

54% exposed to one of 56 pgen high risk drugs in one year....

Number of unique medication exposures over time

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 92 NUMBER 2 | AUGUST 2012
~ 60 "Pharmacogenetically High Risk" Drugs, 13 CPIC genes

Abacavir	Fluorouracil	Phenazopyridine	
allopurinol	haloperidol	phenytoin	
amitriptyline	Hydroxychloroquine	primaquine	
aripiprazole	interferon	probenecid	
atomoxetine	Irinotecan	propafenone	
azathioprine	ivacaftor	Rabeprazole	
Capecitabine	lev 2022 of 4245	nation to (190/) at	
carbamazepine	m 2023 01 4243		
carvedilol	M St. Jude recei	ved at least one	
Chloramphenicol	me of 63 "high-ris	k" drugs in a 1-yr	
chlorquine	Mineriod	J	
ciprofloxacin			
clopidogrel	moxiflocacin		
clozapine	nilotinib	tetrabenazine	
codeine	Nitrofurantoin	Thioguanine	
Dapsone	norfloxacin	thioridazine	
diazepam	nortriptyline	tolterodine	
Dimercaprol	ondansetron	tramadol	
doxepin	oxycodone	venlafaxine	
esomeprazole	paroxetine		0 04 -
fluoxetine	Peg-interferon Dunnen	berger et al Ann Rev Pharm I	ox 2015

At St. Jude, we can overcome (or ignore) many barriers to preemptive genotyping

- We cover all patient care costs
- We provide <u>all</u> medications for 5000 unique high-risk patients per year
 - ~ 80% have cancer
 - ~20% have sickle cell, HIV, and other lifethreatening diseases
- We have a team approach to pt care
- We have an integrated, comprehensive EMR (Cerner) with customized decision support

Ability to genotype at lots of loci on CLIAapproved array is here and allows for preemptive genotyping

- Affy DMET array: over 1 million features to interrogate 1900 polymorphisms in 230 genes
 – *CYP2D6* Copy number assay
- For less money than we spend on 1-2 genes, we can interrogate 230 genes (Fernandez et al, *Clin Pharm Ther*, 2012)
 - Makes pre-emptive genotyping a possibility
 - Includes 9 CPIC genes

PG4KDS : CLINICAL IMPLEMENTATION OF PHARMACOGENETICS at ST. JUDE

Aim: migrate pharmacogenetic tests from laboratory (array-based) into routine patient care, to be available preemptively

- Not whether to implement, but how
- Opened for patient accrual May 2011
- >3000 patients enrolled on the study
- Goal: all SJ pts, all CPIC gene/drug pairs

Hoffman JM, et al. Am J Med Genet C Semin Med Genet. 2014

PG4KDS : CLINICAL IMPLEMENTATION OF PHARMACOGENETICS at ST. JUDE

- Use pharmacogenetically-based array (DMET Plus + CYP2D6, Dr. Broeckel, MCW) (Fernandez CA, et al. *Clin Pharmacol Ther*. 2012 92:360-5).
- Don't put results in EHR without some computational clinical decision support (CDS) to actively guide prescribing
- Updating: once result is ready for 1 patient, migrate results for all past and future pts to EHR

The process

Some steps in PG4KDS Implementation

- QC the genotype data
- Translate into machine-readable clinical test results
- Translate diplotype into phenotype
- Translate phenotype into clinical interpretations for clinicians and pts
- Link high-risk phenotypes to actions: interruptive CDS, medication review
- Develop educational materials, competencies

#SJAccession=1116	500407B					
#PatientName=Doo	e, Jane				Parse report	s for
#DMETfile=DNL_CI	_IA_272_1	11600407	B.dmet_0	GT.txt	results to ext	tract
#DNL ID=DNL_272	_				diplotypes fo	o <mark>r each a</mark>
#PatientID=33337					gene	
#SampleType=Bloc	d					
#TranslationFile=D	MET_Plus	v1.20110	329.transl	ation		
#AnnotationFile=D	MET_Plus	.v1.20110	329.dc_ar	nnot.csv		
#ReporterBuild=0.2	#ReporterBuild=0.11.0					
#VerifiedList=Verifi	edbyAffy_	Mar11 m	arker list.t	xt		
#GeneSymbol=CYP	2D6					
#PharmGKBLink=h	ttp://www	v.pharmgk	kb.org/do/	/serve?objId=F	A128&objCls=0	iene
Q-PCR Determined	Copy Nur	nber	2			
Q-PCR Probe ID	HS04502	391_cn				
Called Interpretation	on Code	NC/PRA/	ΊNΑ			
Called Diplotypes F	Possible	*2/*6				
Called Novel Diplot	types Poss	ible	*1/UNK,	*2/UNK,*6/UN	NK,UNK/UNK	
Copy Number Corr	ected Alle	les	Q-PCR C	opy Number =	2, no correction	n needed.
Number Non-refer	ence Prob	e Sets	7			
Probe Set ID	Affy Veri	fied	Genome	Position db	SNP RS ID	Genotype
Call	Contribu	tes To Alle	eles	Description		
AM_12278	Ν	Ch22:425	525134	rs61736512	NoCall	-
29	CYP2D6	29_16590	G>A(V136)		
AM_12276	Y	Ch22:425	525086	rs5030655	Т/-	Ref/Var

DMET_8170_CYP2D6_translation.txt Materia

Be comprehensive for those few genes: Edit Format View Help File #SJAccession=08-155-0435B define most important variants and #PatientName=XXXXXX 1. #DMETfile=DMET_8170.dmet_GT.txt #TubeNumber=8170 interrogate them #PatientID=(0000)02xxxx #SampleType=PGEN DNA #TranslationFile=DMET_Plus.v1.20101104DRAF 2. document what was and was not #AnnotationFile=DMET_Plus.v1.20090910.dc_a #ReporterBuild=0.8.5 #verifiedList=verifiedbyAffy_Nov08 marker PharmGKB link http://www.pharmgkb.org/do interrogated Independent Copy Number 2 <u>Called Interpretation Code</u> UNIO+UNK call gene-centric diplotypes—not 3. Called Diplotypes Possible *1/*41 ¥2 called wovel Diplocypes_Possible Copy Number Corrected Alleles NA. variants Number Non-reference Probe Sets 5 Probe Set ID Affy Verified Genome Pos AM 12261 Y. ch22:40853887 rs28371725 G/A CYP2D6*41_2988G>A(SpliceDefect) AM_12257 ch22:40853749 Ref/Var *41 Y G/A AM 15502 Ν ch22:40858512 rs1080983 Ref/Var -CYP2D6_-1770G>A G/C AM 12277 Ref/Var - $CYP2D6_1661G>C(V136V)$ Υ ch22:40855076 rs1058164 AM_12247 ch22:40852557 rs1135840 G/C Ref/Var S486T CYP2D6_4180G>C(S486T) Υ Number Reference only Probe Sets 25 Genome Position dbSNP RS ID Affv Verified Contributes To Alleles Descri Probe Set ID Genotype Call Ref/Ref *4,*10,*14A,*56B,*64 AM_12285 ch22:40856638 rs1065852 C/C CYP2D6_100C>T(P34S) Y. CYP2D6*12_124G>A(G42R) G/G AM 12284 Υ ch22:40856614 rs5030862 Ref/Ref *12 AM 12283 ch22:40856600 rs72549357 T/T Ref/Ref *15 CYP2D6*15_137insT Ν CYP2D6*11_883G>C(spliceDefect) AM_12281 G/G Ref/Ref *11 Υ ch22:40855856 rs5030863 c/c Ref/Ref *17,*40,*64 CYP2D6_1023C>T(T107I) AM 12280 Υ ch22:40855716 rs28371706 G/G AM 12278 Ν ch22:40855078 rs61736512 Ref/Ref *29 CYP2D6*29_1659G>A(V136I) AM_12276 γ ch22:40855030 rs5030655 T/T Ref/Ref *6 CYP2D6*6_1707delT Ref/Ref *14A,*14B,*8 AM 12275 rs5030865 N ch22:40854979,ch22:40854979 G/G CYP2D6*14or*8_ γ G/G Ref/Ref AM 12274 ch22:40854891 rs3892097 *4 CYP2D6*4_1846G>A(SpliceDefect) γ ch22:40854873 rs72549356 -/-Ref/Ref *40 CYP2D6*40_1863ins(TTTCGCCCC)2 AM_12272 -/-CYP2D6*20 1973insG AM 12270 γ ch22:40854763 rs72549354 Ref/Ref *20 Υ AACT/AACT Ref/Ref *19 CYP2D6*19_2539delAACT AM 12268 ch22:40854195 rs72549353 γ A/A Ref/Ref *3 CYP2D6*3_2549delA AM_12267 ch22:40854188 rs35742686 Y -/-Ref/Ref *21 CYP2D6*21_2573insC AM 12266 ch22:40854157 rs72549352 Ref/Ref *38 AM 12265 Υ GACT/GACT CYP2D6*38_2587delGACT ch22:40854147 rs72549351 Y AGA/AGA Ref/Ref *9 AM_12264 ch22:40854120 rs5030656 CYP2D6*9_2615deTAAG CYP2D6*7_2935A>C(H324P) A/A γ Ref/Ref *7 AM 12259 ch22:40853802 rs5030867 γ G/G Ref/Ref *44 CYP2D6*44_2950G>C(SpliceDefect) AM 12258 ch22:40853787 rs72549349 Y AM 12255 ch22:40853554 G/G Ref/Ref *29 CYP2D6*29_3183G>A(V338M) rs59421388 c/c Ref/Ref *56A,*56B AM_12254 γ rs72549347 ch22:40853536 CYP2D6*56_3201C>T(R344X) AM 12252 Υ ch22:40853477 rs72549346 -/-Ref/Ref *42 CYP2D6*42_3259insGT T/T CYP2D6*18_4125dupGTGCCCACT AM_12248 Υ ch22:40852603 rs1135836 Ref/Ref *18 Ref/Ref -AM 15506 Ν ch22:40858920 rs28360521 G/G CYP2D6_-2178G>A Ref/Ref -CYP2D6_-1961C>G>A AM 15503 Ν ch22:40858703,ch22:40858703 _ C/C C/C AM_12291 Y ch22:40858326 Ref/Ref CYP2D6_-1584C>G rs1080985

DMET_8170_CYP2D6_translation.txt - Notepad

File Ealt Form	iat view	нер							
#SJAccession= #PatientName= #DMETfile=DME #TubeNumber=8 #PatientID=(0 #SampleType=F #TranslationFi #AnnotationFi	=08-155-0 =>>>>> &T_8170.c &170 0000)02>>> PGEN DNA =ile=DMET ile=DMET	0435B met_GT.txt ∝ ~_Plus.v1.20101104D Plus.v1.20090910.d	RAFT.full.tran c_annot.csv	slation	All va docu	iriants mente	s tested a ed in EH	are R	
#verifiedList PharmGKB link Independent C Called Interp Called Diplot Called Novel	:=Verifie http: Copy Numb retation ypes Pos Diplotyp	edbyAffy_Nov08 mark //www.pharmgkb.org per 2 Code UNIQ+UN sible *1/*41 pes Possible	er list.txt //do/serve?objI K *2/UNK	d=PA128&obj	jCls=Gene				
Number Non-re	eference	Probe Sets 5							_
Probe Set ID AM_12261 AM_12257 AM_15502 AM_12277 AM_12247	Affy Y Y N Y Y	Verified Genome Ch22:40853887 Ch22:40853749 Ch22:40858512 Ch22:40855076 Ch22:40852557	Position dbSNP rs16947 C/T rs28371725 rs1080983 rs1058164 rs1135840	RS ID Ref/Var G/A G/C G/C G/C	Genotype *2,*8,*11, Ref/Var *43 Ref/Var - Ref/Var - Ref/Var 543	Call *12, *14A, *1 1 CYP21 CYP21 CYP21 86T CYP21	Contributes 14B,*17,*19,*20, D6*41_2988G>A(Sp D61770G>A D6_1661G>C(V136V D6_4180G>C(S4867	To Alleles Des ,*21,*29,*40,*41 pliceDefect) /) r)	cri ,*4
Number Refere	ence only	/ Probe Sets	25						
Probe Set ID	Affy	Verified Genome	Position dbSNP	RS ID	Genotype	Call	Contributes	TO Alleles Des	cri
AM_12285	Y	Ch22:40856638	rs1065852	c/c	Ret/Ret *4	,*10,*14A,	*56B,*64 CYPZ	2D6_100C>T(P34S)	
AM_12284	Y	Ch22:40856614	rs5030862	G/G T/T	RET/RET *1. Dof/Dof *1	.2 CYP2I	D6*12_124G>A(G42 D6*15_127ipcT	2R)	
AM_12205 AM_12281	N V	ch22:40856600	rs5020862	- / - c / c	Dof/Dof *11	ט בידע בידע. 1 בידע בידע	06*11_1371NS1 06*11_883656(sp]	liceDefect)	
AM_12281	Ý	ch22:40855716	rs28371706		Ref/Ref *1	7. *40. *64	CYP2D6 10230	->T(T107T)	
AM 12278	Ň	ch22:40855078	rs61736512	Ğ/Ğ	Ref/Ref *2	9 CYP21	D6*29 1659G>A(V1	L36I)	
AM_12276	Ŷ	Ch22:40855030	rs5030655	T/T	Ref/Ref *6	CYP2I	D6*6_1707delT	/	
AM_12275	N	ch22:40854979,c	h22:40854979	rs503080	55 G/0	′G Ref∕K	Ref ¥14A,*14B,*8	3 CYP2D6*14or	*8_
AM_12274	Y	Ch22:40854891	rs3892097	G/G	Ref/Ref *4	CYP2I	D6*4_1846G>A(Sp]	liceDefect)	
AM_12272	Y	Ch22:40854873	rs72549356	-/-	Ref/Ref *40	0 CYP2I	D6*40_1863ins(TT	rtcgcccc)2	
AM_12270	Y	Ch22:40854763	rs72549354	-/-	Ref/Ref *2	0 CYP2I	D6*20 _1973insG	_ _	
AM_12268	Y	Ch22:40854195	rs72549353	AACT/AAC	IT Ref	t/Ret *19	CYP2D6*19_25	539de laact	
AM_12267	Y	Ch22:40854188	rs35742686	A/A	Ret/Ret *3	CYPZI	D6*3_2549deIA		
AM_12266	Ŷ	Ch22:40854157	rs/2549352	-/-	Ret/Ret *2	1 CYP21	D6*21_25/31nsC	07-1-1	
AM_12265	Ŷ	Ch22:40854147	rs/2549351	GACT/GAC	IT RET	T/RET *38	CYP2D6*38_21	087delGACT	
AM_12264	Ÿ	Ch22:40854120	rs5030656		Ref/Ref *9		D6*9_261302TAAG	140	
AM_12239	Y	Ch22:40853802	rsbusu80/ pc73540240	A/A C/C	Ref/Ref */	4 CYP21	D6*7_2933A>C(H32 D6*44_3050a>c(H32	(4P) DicoDofact)	
AM_12250	ř	Ch22:40033707	r572349349 nc50431299		Dof/Dof #2	4 CYP21	D6*30_2192C5A()/2	29M)	
AM_12255	T V	ch22.40853554	rs77540247		Dof/Dof #5	9 CIPZI 60 *568	CVD2D6*56 22)01/5T(0244V)	
AM 12252		ch22:40853477	rs72549347	2/2	Dof/Dof #41	2 CVP2	D6*42 3259insct		
AM 12248	Ý	ch22:40852603	rs1135836	т/т	Ref/Ref *1	8 CYP21	р6*18_4125dupGт0	SCCCACT	
AM 15506	N	ch22:40858920	rs28360521	G/G	Ref/Ref -	Сүр2і	D6 -2178G>4		
AM 15503	N	ch22:40858703.c	h22:40858703	-	C/C Ref	f/Ref -	CYP2D6 -1961	LC>G>A	
AM_12291	Ŷ	ch22:40858326	rs1080985	c/c	Ref/Ref -	CYP21	D61584C>G		
				_, _					

DMET Tracker: QC, avoiding duplicates, conflicts, document problems

Check DMET genotypes against existing genotypes, gene-by-gene

	Show 10	entries								
Gene	DMET Diplotype	Existing Diplotype	DMET Race	Clinical Race	DMET Gender	Clinical Gender	QC Flag	Suspect QC	EMR Priority	РК
TPMT	*1/*1	G/G G/G A/A	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	HIG
CYP2D6	(*2/*6)2N	*2A/*6	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	HIG
CYP2D6	(*10/*41)2N	*41/NEGATIVE	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	
CYP2D6	(*2/*2)3N	*2A/*2A	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	
TPMT	*1/*3A,*3B/*3C	G/G A/G A/G	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	INT /
CYP2D6	(*2/*9)2N	*2A/*9	white;	white	female(3)	female	PASS		ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(3)	female	PASS		ROUTINE	HIG
TPMT	*1/*1	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	HIG
CYP2D6	(*1/*41)2N	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	

Quality Control Steps

Check DMET gender against self-declared gender

Gene	DMET Diplotype	Existing Diplotype	DMET Race	Clinical Race	DMET Gender	Clinical Gender	QC Flag	Suspect QC	EMR Priority	РК
TPMT	*1/*1	G/G G/G A/A	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	HIG
CYP2D6	(*2/*6)2N	*2A/*6	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	HIG
CYP2D6	(*10/*41)2N	*41/NEGATIVE	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	
CYP2D6	(*2/*2)3N	*2A/*2A	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	
TPMT	*1/*3A,*3B/*3C	G/G A/G A/G	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	INT /
CYP2D6	(*2/*9)2N	*2A/*9	white;	white	female(3)	female	PASS		ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(3)	female	PASS		ROUTINE	HIG
TPMT	*1/*1	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	HIG
CYP2D6	(*1/*41)2N	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	

PG4KIDS: DMET Tracker

save your changes?

111 genotypes observed for CYP2D6

Pharmacogenetics tab added to EHR; all clinically eligible genotypes are entered, along with a gene-specific consult and letter to patient

Menu	.	🔹 🖈 🛉 Flowsheet	
Flowsheet	^	la 🗖 🌫 🎽	
Flowsheet, Special View	vs		
Allergies/ADR		Labs/DI Quick View Vitals/Measures All Resu	ults Daily Clinical/Scanned Doc Mole Micro/Sero D
Clinical Trials		Nursing/Respiratory Pharmacogenetics Pro	otocol/NPTP Documents Consents Consents
Documents All	🕂 Add	Flowsheet: Pharmacogenetics	Level: Pharmacogenetics
Documents Clinical Not	ies		
Documents Form Brows	ser		Last 100 Results in the Past 99 Ye
Documents IVIEW I&O		Pharmacogenetics	10/20/2013 9/10/2013 8/29/2013 8/27/2013 20:22 11:01 04:00 00:19
Domiciliary Residence		Pharmacogenetics	20:22 11:01 04:00 00:19
Growth Chart		CYP2C19 PG4KDS Genotype f	*1/*1
		CYP2C19 PG4KD5 Consult f	Routine
Infection Summary		CYP2C19 PG4KDS Letter C	LYPZC19 PG4KL
Inpatient Summary mPa	ige	CYP2D6 Allele 2	*2A
IPD Kardex		CYP2D6 Genotype Consult	f corr Normal
		CYP2D6 PG4KDS Consult f	Routine
Lab Print	=	CYP2D6 PG4KDS Genotype f	(*1/*2)2N
Legal Page		CYP2D6 PG4KDS Letter C	CYP2D6 PG4KD9
Meds Formulary		Glucose-6-Phosphate Dehydrogenase	9,2
		SLCOIBI PG4KDS Genocype	Routine
Meds MAR		SLCO1B1 PG4KDS Letter S	SLCO1B1 PG4KE
Meds MAR Summary		TPMT Genotype	*1/*1
Mode Medication List		TPMT Genotype Consult	f Normal
		TPMT PG4KDS Genotype f	*1/*1
Microbiology		TPMT PG4KDS Consult f	Routine
Orders		TPMT PG4KDS Letter T	IPMT PG4KDS L(
		Scanned Phannacogenetics Documents	Scanned PhannyScanned Phanny

Result and Consult Display: default interpretation is built from ordered, standardized sentences in Consult Builder

Specimen

Comments

Action List

Protocol/NPTP Documents _Cons	ents Consents		
bs/DI Quick View Vitals/N	leasures All Results Daily Clinical/Scann	ned Doc Mole Micro/Sero	Dia
owsheet: Pharmacogenetics	V Level: Pharmacog	enetics	• M
			Last 10
avigator 🛛	Pharmacogenetics	6/6/2013 10:16	25/2013 22:10
Pharmacogenetics	Pharmacogenetics		
	CYP2D6 PG4KDS Genotype	f (*1/*1)1N	
	CYP2D6 PG4KDS Consult	f Routine	
	TPMT PG4KD5 Genotype	f Abn *1/*3C	
	TPMT PG4KDS Consult	f Abn Priority	
	CYP2C19 PG4KDS Genotype	f Abn *1/*28	
	CYP2C19 PG4KDS Consult	f Abn Priority	
Glucose-6-Phosphate Dehydrogenase 9.9			

1.) (Medium Importance) Result Comment by DUNNENBERGER, MARK on August 28, 2013 17:21 ***PHARMACOGENETICS CONSULT FOR*** *TPMT GENOTYPE*

Sample for TPMT Genotype Obtained: 06/06/2013 10:16:00 PG4KDS TPMT Genotype Result: *1/*3C

This result signifies that this patient has one copy of a wild-type (high activity) allele and one copy of a nonunctional (low activity) allele. This patient is predicted to have intermediate TPMT activity. The patient is at risk or myelosuppression with normal doses of drugs in the thiopurine class (6-mercaptopurine, 6-thioguanine or izathioprine), and thus reduced starting doses may be needed. Some experts recommend lower doses of hiopurines in heterozygotes because these patients may be at a higher risk of thiopurine-related late secondary cancers. For 6-mercaptopurine and azathioprine, consider starting at 30-70% of the normal dose. For example, in normal dose of 6-mercaptopurine (e.g., 75 mg/m2/day) should be reduced to 20-50 mg/m2/day. A normal dose of azathioprine (e.g., 2-3 mg/kg/day) should be reduced to 0.6 - 2.0 mg/kg/day. For thioguanine reduce the normal dose by 30-50%.

Trate thiopurine doses based on myelosuppression. In the setting of myelosuppression, and depending on ther therapy, emphasis should be on reducing thiopurine doses over other agents. Allow 2-4 weeks to reach steady-state after each dosage adjustment. For drug monitoring, consider obtaining a thiopurine metabolite erythrocyte concentration (i.e., test name TGNRBC clinical). For more information about how TPMT activity influences thiopurine dosing please go to www.stjude.org/pg4kds.

Kristine Crews, Pharm D., nader 2256

Hicks JK, et al. Clin Pharmacol Ther. 2012;92:563-6.

		Diplotype	es <u>Sentences Consults New Patient</u> :	3
Со	nsult	Builder _{Sele}	ct Gene: CYP2D6 V If a consult has a working conv. only s	g.
Status	<u>Key Phrase</u>	All		
Approved	*1/*5 Dir1-51	Diplotype Interpretation	The CYP2D6 genotype result of *1/*1 with a copy number one copy of a wild-type (*1, normal function) allele and one	J. A result
Approved	*10/*5 Diplotype	Diplotype Interpretation	The CYP2D6 genotype result of *10/*10 with a copy number of 1 is equinated nasone copy of a reduced function (*10) allele and one deleted (*5) allele	valent to *10/*5. A re
Approved	*16/*5 Diplotype	Diplotype Interpretation	The CYP2D6 genotype result of *16/*16 with a copy number of 1 is equivalent has one copy of a non-functional (*16) allele and one deleted (*5) allele.	valent to *16/*5. A r
Approved	*17/*5 Diplotype	Diplotype Interpretation	The C A result of *10/*5 signifies	valent to *17/*5. A r e.
Approved	*2/*5 Diplotype	Diplotype Interpretation	The C that the patient has one	lent to *2/*5. A result allele.
Approved	*29/*5 Diplotype	Diplotype Interpretation	The C COPY of a reduced function	valent to *29/*5. A re
Approved	*3/*5 Diplotype	Diplotype Interpretation	The C (10) allele and one deleted (*5) allele.	lent to *3/*5. A result
Approved	*36/*5 Diplotype	Diplotype Interpretation	The CITZED genotyperesan of 50, 50 what a copy number of 1 is equi one copy of a non-functional (*36) allele and one deleted (*5) allele.	valent to *36/*5. A n
	*4/*5		The CYP2D6 genotype result of *4/*4 with a copy number of 1 is equival	ent to *4/*5. A result
start	6 🗅 😤 🖲) 🖾 🖂 🖸 🖸 🔂 🖿 🗍	🧭 5 M → 🌈 5 I → 🔯 5 M → 💽 Micr 🗁 SOP 👜 SOP	🛛 🕹 Mozil mre

CPIC Translation Tables: diplotype to phenotype to actionability

Genotype Test Result for SLCO1B1	Coded Genotype/Phenotype Summary ^a	EHR Priority Result Notation ^b
*1a/*1a	None	Normal/Routine/Low Risk
*1a/*1b	None	Normal/Routine/Low Risk
*1a/*2	SLCO1B1 Intermediate Function	Abnormal/Priority/High Risk
*1a/*3	SLCO1B1 Intermediate Function	Abnormal/Priority/High Risk
*1a/*4	Indeterminate	None
*1a/*5	SLCO1B1- Intermediate Function	Abnormal/Priority/High Risk
*1a/*6	SLCO1B1 Intermediate Function	Abnormal/Priority/High Risk
*1a/*7	Indeterminate	None
*1a/*8	Indeterminate	None
*1a/*9	SLCO1B1 Intermediate Function	Abnormal/Priority/High Risk
*1a/*10	SLCO1B1 Intermediate Function	Abnormal/Priority/High Risk
*1a/*11	Indeterminate	None
*1a/*12	Indeterminate	None
*1a/*13	Indeterminate	None
*1a/*14	SLCO1B1 Increased Function	None
*1a/*15	SLCO1B1 Intermediate Function	Abnormal/Priority/High Risk
*1a/*16	Indeterminate	None
*1a/*17	SLCO1B1 Intermediate Function	Abnormal/Priority/High Risk
*1a/*18	Indeterminate	None
*1a/*19	Indeterminate	None

SLCO1B1 Genotype and Simvastatin: Point of Care Clinical Decision Support

Note: Circled numerals refer to Supplementary Table 12

^{a,d} See **Supplementary Table S12** for diplotype/phenotype specific pre- and post-test alert example. ^bAdditional actions may include ordering a pharmacogenetic test, preventing the clinician from ordering the medication or allowing the clinician to cancel out of the alert. ^cPriority result defined as a genetic test result that results in a change in drug, drug dose, or drug monitoring.

Clinical Pharmacology & Therapeutics (2014); 96 4, 423–428

Flow Chart Reference Point CDS Alert Text^a CDS Context, Trigger Condition (See Supplemental Figure S3) Relative to Genetic Testing 1 Pre-Test No *SLCO1B1* diplotype may be important for simvastatin side effects. An SLCO1B1 genotype SLCO1B1 does not appear to have been ordered for this result on file patient. Use of an alternative statin or dose may be recommended. Please consult a clinical pharmacist^b for more information. Based on the genotype result, this patient is Post-Test SLCO1B1 -2 Intermediate predicted to have intermediate SLCO1B1 function Function and may be at increased risk for developing simvastatin-associated myopathy. Consider starting with a lower dose of simvastatin (20 mg/day for adults) or choosing an alternate statin agent. Monitor creatine kinase levels routinely. Please consult a clinical pharmacist^b for more information. Based on the genotype result, this patient is Post-Test SLCO1B1 -2 Low Function predicted to have low SLCO1B1 function and may be at high risk for developing simvastatinassociated myopathy. Consider starting with a lower dose of simvastatin (20 mg/day for adults) or choosing an alternate statin agent. Monitor creatine kinase levels routinely. Please consult a clinical pharmacist^b for more information.

Supplemental Table S12. Example Implementation of this Guideline: Point of Care Clinical Decision Support

^aThe specific wording of the alert text may differ among sites.

^bPharmacist, pharmacologist, or a clinician with pharmacogenetic expertise/training.

Clinical Pharmacology & Therapeutics (2014); 96 4, 423–428

High-risk diplotypes translated to phenotype, automatically populated into Problem List of EMR

🔧 😥 Qualifier	Name of Problem	Onset Date	Classific			
All Problems						
	Acute lymphocytic leukemia	03/25/2013	HIMS S			
	LEUKEMIA, ACUTE LYMPHOCYTIC	03/25/2013	HIMS S			
	PT. HAS SUBQPORT SINGLE	03/25/2013	Medical			
	TPMT - LOW OR ABSENT ACTIVITY	04/12/2013	Medical			
Customized Decision support "behind the scenes": Links high-risk diplotypes to ordering of applicable high-risk drug Each high-risk result triggers med reconciliation						
Allows for manua	al entries into problem list					

Selected Problem List Entries for Actionable Phenotypes

Gene	Problem List Entry
TPMT	TPMT - INTERMEDIATE ACTIVITY
	TPMT - LOW OR ABSENT ACTIVITY
	TPMT - POSSIBLE INTERMEDIATE ACTIVITY
CYP2D6	CYP2D6 - POSSIBLE ULTRA-RAPID METABOLIZER
	CYP2D6 - ULTRA-RAPID METABOLIZER
	CYP2D6 - INTERMEDIATE METABOLIZER
	CYP2D6 - POSSIBLE INTERMEDIATE METABOLIZER
	CYP2D6 - POOR METABOLIZER
	CYP2D6 - POSSIBLE POOR METABOLIZER
SLCO1B1	SLCO1B1 - POSSIBLE INTERMEDIATE FUNCTION
	SLCO1B1 - INTERMEDIATE FUNCTION
	SLCO1B1 - POSSIBLE LOW FUNCTION
	SLCO1B1 - LOW FUNCTION
CYP2C19	CYP2C19 - ULTRA-RAPID METABOLIZER
	CYP2C19 - INTERMEDIATE METABOLIZER
	CYP2C19 - POOR METABOLIZER
	CYP2C19 - POSSIBLE POOR METABOLIZER

Hoffman JM, et al. Am J Med Genet C Semin Med Genet. 2014

Pre-test alerts contains prescribing recommendations if a patient has not been genotyped

WARNING

A CYP2D6 genotype is recommended before prescribing codeine. A CYP2D6 genotype test does not appear to have been ordered for this patient. Use an alternative agent such as a non-opioid, or morphine, or HYDROmorphone (e.g.: Dilaudid®), or acetaminophen/hydroCODONE (e.g.: Lortab®, Vicodin®). Please consult a clinical pharmacist or go to www.stjude.org/pg4KDS for more information.

Alert Action	Absence of test result will
○ Cancel	drive the CDS; so test
O Continue	result must be findable

Add Order for:

Discern: (1 of 1)

Cerner

CYP2D6 Genotype -> T;N, Collect Now, Blood, Fasting Required: No, ONCE

History

More info

Bell GC, et al. J Am Med Inform Assoc. 2014;21:e93-9

0K

Override alert options for pre-test alerts

Override Reason Form	
This pt had tolerance/efficacy in past This patient is status post allo BMT A genotype was just ordered Other - see freetext reason	
Additional Freetext Override Reason:	
<	>
<u>Cancel</u>	<u> </u>

Bell GC, et al. J Am Med Inform Assoc. 2014;21:e93-9

Post-test alerts contain prescribing recommendations based on the patient's genotype test result

WARNING

Based on the genotype result, this patient is predicted to have intermediate TPMT activity. The patient is at risk for myelosuppression with normal doses of 6-mercaptopurine. Consider starting 6-mercaptopurine doses at 30 - 70% of the normal dose. Please consult a clinical pharmacist or review the pharmacogenetics tab for more information.

Alert Action

Cancel entry

O Dose altered accordingly

Modify

History

CDS can be driven off of test result or derivation thereof (e.g. "genetic" problem list entry or phenotype)—but the terms should be standardized to get uptake in EHRs.

ΟK

INSTITUTE OF MEDICINE

Advising the nation • Improving health

OF THE NATIONAL ACADEMIES

ABOUT THE IOM	REPORTS	ACTIVITIES	MEE
BROWSE HISTORY			

Action Collaboratives

DIGITizE: Displaying and Integrating Genetic Information Through the EHR

Sandy Aronson, M.A. (Co-Chair) Executive Director of IT Partners HealthCare Personalized Medicine

EHRs do not currently have the ability to handle genomic information.

There is a lack of standards for the data, interoperability, scalability, privacy, security, and storage.

A coordinated effort of key stakeholders is needed to set these standards in order to improve patient care so that genomic information is successfully integrated into the EHR.

John David Nolen, M.D., Ph.D., M.S.P.H. (Co-Chair) Senior Director and General Manager for Laboratory Medicine Cerner Corporation

CPIC Phenotype Term Standardization Project: Allele function and Phenotype

Group memberships for Delphi process surveys for pgen terms

- CPIC
- ClinVar
- PGRN
- CDC Pgx nomenclature WG
- GA4GH's Clinical WG
- ClinGen PG and data modeling WG
- IGNITE
- eMERGE
- IUPHAR

- ACMG Laboratory Standards and Guidelines Committee
- CAP Pharmacogenetics WG
- HL7 Clinical Genomics WG
- IOM's Roundtable on Translating Genomic-Based Research for Health
- AMIA genomics and translational bioinformatics WG
- European Medicines Agency
- G2MC Pharmacogenomics WG

Final Terms-Allele function

Term/Gene	Final Term*	Functional Definition	Example
Category			diplotypes/alleles
Allele	Increased Function	Function greater than normal function	CYP2C19*17
Functional	Normal Function	Fully functional/wild-type	CYP2C19*1
Status-all	Decreased Function	Function less than normal function	CYP2C19*9
genes	No Function	Non-functional	CYP2C19*2
	Unknown Function	No literature describing function or the allele is novel	CYP2C19*29
	Uncertain Function	Literature supporting function is conflicting or weak	CYP2C19*12

Final Terms-Phenotype

Term/Gene	Final Term*	Functional Definition	Example	Term/Gene
Category			diplotypes/alleles	Category
Phenotype-Drug Metabolizing Enzymes (CYP2C19, CYP2D6, CYP3A5, CYP2C9, TPMT, DPYD, UGT1A1)	Ultra-rapid Metabolizer	Increased enzyme activity compared to rapid metabolizers.	Two increased function alleles, or more than 2 normal function alleles	CYP2C19*17/*17 CYP2D6*1/*1XN
	Rapid Metabolizer	Increased enzyme activity compared to normal metabolizers but less than ultra-rapid metabolizers.	Combinations of normal function and increased function alleles	CYP2C19*1/*17
	Normal Metabolizer	Fully functional enzyme activity	Combinations of normal function and decreased function alleles	CYP2C19*1/*1
	Intermediate Metabolizer	Decreased enzyme activity (activity between normal and poor metabolizer)	Combinations of normal function, decreased function, and/or no function alleles	CYP2C19*1/*2
	Poor Metabolizer	Little to no enzyme activity	Combination of no function alleles and/or decreased function alleles	CYP2C19*2/*2
Phenotype- Transporters (SLCO1B1)	Increased Function	Increased transporter function compared to normal function.	One or more increased function alleles	SLCO1B1*1/*14
	Normal Function	Fully functional transporter function	Combinations of normal function and/or decreased function alleles	SLCO1B1*1/*1
	Decreased Function	Decreased transporter function (function between normal and poor function)	Combinations of normal function, decreased function, and/or no function alleles	SLCO1B1*1/*5
	Poor Function	Little to no transporter function	Combination of no function alleles and/or decreased function alleles	SLCO1B1*5/*5
Phenotype-High risk genotype status (HLA-B)	Positive	Detection of high-risk allele	Homozygous or heterozygous for high-risk allele	HLA-B*15:02
	Negative	High risk-allele not detected	No copies of high-risk allele	

www.cpicpgx.org

Next Steps for Standardized Terms

- Use final terms in CPIC Guidelines and in our practice
- Dissemination
 - Posted on cpicpgx.org
 - DIGITiZE implementation guide
 - LOINC terms submitted
 - Manuscript submitted
- Several groups have endorsed (e.g. AMP)
- Encourage adoption by EHR vendors and clinical labs

Genetic testing is just one step

Relling & Evans, Nature, 2015

But.... there remains significant reluctance to use pharmacogenetic testing in the clinic...

Clinical Perspective on the Clinical Pharmacogenetics Implementation Consortium Updated 2014 Guidelines for CYP2D6 and Codeine

Wayne T. Nicholson* and Christine M. Formea

"many healthcare providers follow a WHO ladder "type" approach for the treatment of pain". Because second step of the WHO ladder includes opioids "commonly used for moderate pain (e.g., tramadol, codeine, hydrocodone, and possibly oxycodone)" that overlap with medicines to avoid (codeine and tramadol) or use with caution (oxycodone and hydrocodone), genetic testing is questioned because "the use of an unfamiliar [alternative] drug ...is likely to carry a greater risk."

Devil's advocate: CYP2D6 and codeine

- Consequence of providing genetic status could be:
 - Never use codeine—too hard to look up genetics, so overall population pain relief is worse (either everyone uses morphine—or everyone uses NSAIDs)
 - Use a less effective drug (like NSAID) for all with high risk genotypes (too much hassle to use narcotics)
 - Ignore genetics --- "pt tolerated it well in the past"
- If we tolerate illogical prescribing practices that aren't evidence-based, genetics won't help
Reasons cited to NOT use genetics to guide prescribing

- Use of alternatives may create more adverse effects if not prescribed appropriately (e.g. stop using codeine and misuse other narcotics or use NSAIDs)
- To avoid testing, just stop using the drug (e.g. CBZ/phenytoin [PMID: 25355835]; codeine in children)
- Clinicians may not understand genetic test results (hets vs homozygous variants) and make wrong decisions (TPMT and thiopurines)
- "patient tolerates it fine---why change?"
- Health care dollars better spent elsewhere
- Lack of randomized prospective clinical trials comparing genetically based vs conventional prescribing

Implementation of Pharmacogenomics: Evidence Needs

Mary V. Relling and David L. Veenstra*

February 26, 2015

*The authors are participants in the activities of the IOM Roundtable on Translating Genomic-Based Research for Health. Prospective clinical trials for all testing decisions would be problematic

- "Prescribing decisions are routinely made on the basis of imperfect evidence and on extrapolations between solid evidence of mechanisms underlying interpatient variability in drug response and unstudied clinical scenarios."
- E.g. dosing based on liver or renal dysfunction, avoidance of drug interactions, almost all prescribing in pediatrics

CPIC level A guideline genes

• *TPMT*

- MP, TG, azathioprine
- CYP2D6
 - Codeine, tramadol, hydrocodone, oxycodone, TCAs*
- CYP2C19
 - TCAs*, clopidogrel, voriconazole*
- VKORC1
 - warfarin
- CYP2C9
 - Warfarin, phenytoin*
- HLA-B
 - Allopurinol, CBZ, abacavir, phenytoin

- CFTR
 - ivacaftor
- DPYD
 - 5FU, capecitabine, tegafur
- G6PD
 - rasburicase
- *UGT1A1*
 - Irinotecan, atazanavir
- SLCO1B1
 - simvastatin
- IFNL3 (IL28B)
 - interferon
- CYP3A5
 - Tacrolimus*

- Mechanism
- is PK for
- 8/13

https://www.pharmgkb.org/page/cpicGeneDrugPairs

For pharmacogene/drug pairs with a pharmacokinetic basis

- If PK is related to drug effect, data relating genetics to PK can be used to extrapolate genetics to drug effect
- Completely analogous to using creatinine clearance to adjust acyclovir doses, bilirubin to adjust vincristine doses, and weight/BSA to adjust doses for children compared to adults
 - Requiring a randomized clinical trial comparing standard to reduced doses of acyclovir in patients with creatinine clearance of 25 ml/min/1.73m² would be unethical and a waste of precious resources

PK extrapolations for dosing decisions are ubiquitous

NDA 18-603/S-027 Page 10 renal

Adults and Adolescents (12 years of age and older): 10 mg/kg infused at a constant rate over 1 hour, every 8 hours for 10 days.

Pediatrics (3 months to 12 years of age): 20 mg/kg infused at a constant rate over 1 hour, every 8 hours for 10 days.

Neonatal Herpes Simplex Virus Infections (Birth to 3 months): 10 mg/kg infused at a constant rate over 1 hour, every 8 hours for 10 days. In neonatal herpes simplex infections, doses of 15 mg/kg or 20 mg/kg (infused at a constant rate over 1 hour every 8 hours) have been used; the safety and efficacy of these doses are not known.

Varicella Zoster Infections: Zoster in Immunocompromised Patients:

Adults and Adolescents (12 years of age and older): 10 mg/kg infused at a constant rate over 1 hour, every 8 hours for 7 days.

Pediatrics (Under 12 years of age): 20 mg/kg infused at a constant rate over 1 hour, every 8 hours for 7 days.

Obese Patients: Obese patients should be dosed at the recommended adult dose using Ideal Body Weight.

Patients with Acute or Chronic Renal Impairment: Refer to DOSAGE AND ADMINISTRATION section for recommended doses, and adjust the dosing interval as indicated in Table 5.

Creatinine Clearance	Percent of	Dosing Interval
$(mL/min/1.73 m^2)$	Recommended Dose	(hours)
>50	100%	8
25 - 50	100%	12
10 - 25	100%	24
0 - 10	50%	24

Table 5. Dosage Adjustments for Patients with Renal Impairment

The stronger the evidence that the gene variants affect drug PK, the lower the need for clinical trial data

Need for clinical trials comparing dosing with vs without genetically informed prescribing

PK basis of gene's effect on drug

Challenges to implementing pharmacogenetics in the clinic

- Generating sufficient genotype/phenotype and clinical evidence
- Tolerating illogical prescribing practices
- Overcoming hype: "pharmacogenomic testing needs to be viewed as a tool to improve drug therapy that is incremental and affordable, rather than revolutionary and cost- saving." (Veenstra CPT Feb 2016)

Resources for Implementers

Crews KR, et al. Development and implementation of a pharmacist-managed clinical pharmacogenetics service. Am J Health-Syst Pharm. 2011;68:143-50. PMID: 21200062 5th Year of first ASHP accredited Pharmacogenetics Residency

7272 Wisconsin Avenue Bethesda, Maryland 20814 301-657-3000 Fax: 301w-664-8877 ww.ashp.org

Kevin

Hicks

Gillian Bell

Mark Dunnenberger

Rose Gammal

Amy Pasternak

PG4KDS and **CPIC** Acknowledgements

http://www.stjude.org/pg4kds/implement

Cyrine Haidar Amy Pasternak Colton Smith Don Baker Wenjian Yang Kris Crews PK RNs Nancy Kornegay Uli Broeckel

Ulrike Reiss

Charles Mullighan Sima Jeha Ching-Hon Pui William E. Evans Torrey Sandlund Sue Kaste Cheng Cheng Aditya Gaur https://cpicpgx.org/

Kelly Caudle Teri Klein James Hoffman Michelle Carrillo

Bob Freimuth Josh Peterson Dan Roden Julie Johnson Russ Altman

Clinical Pharmacogenetics Implementation Consortium