Formula Card:

Circle -
$$A = \pi \cdot r^2$$
 $C = \pi \cdot d$ $\pi \approx 3.14$

Rectangle - $A = l \cdot w$ P = l + l + w + w

Triangle - $A = \frac{1}{2}b \cdot h$ $P = sum \ of \ all \ of \ the \ sides$

Parallelogram - $A = b \cdot h$ $P = sum \ of \ all \ of \ the \ sides$

Further of an
$$-A = b \cdot n$$
 $F = sum of an of in$

Cone -
$$V = \frac{1}{3}\pi \cdot r^2 \cdot h$$

Sphere -
$$V = \frac{2}{3}\pi \cdot r^2 \cdot h$$

Cylinder - $V = \pi \cdot r^2 \cdot h$

Graphing: Remember to graph the x (horizontal) and then the y (vertical). (x, y)

Absolute Value: distance away from zero (always positive)

Example 1:
$$|10-7| = |3| = 3$$

Example 2:
$$|-3+-5| = |-8| = 8$$
 Example 3: $|-8-2| = |-6| = 6$

Example 3:
$$|-8-2| = |-6| = 6$$

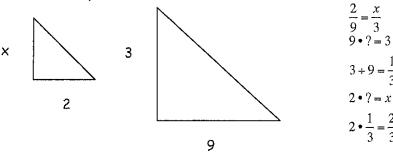
Measures of Central Tendency

- Mean: average; sum of all numbers total numbers in list
- Median: middle number in list of numbers going from least to greatest
- Mode: number that appears most often in a list of numbers
- difference between largest number and smallest number

Example: 5, 10, 2, 6, 2, 2
Mean:
$$\frac{5+10+2+6+2+2}{6} = \frac{27}{6} = 4.5$$

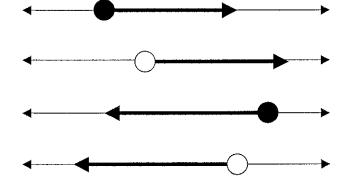
Median: 2, 2,
$$(2,5)$$
, 6, 10 $\frac{2+5}{7} = \frac{7}{2} = 3.5$

Multiplying Fractions


- 1. Reduce fractions, if possible.
- 2. Multiply across.
- 3. Check that your answer is in lowest terms.

Example: 1. $\frac{5}{10} \cdot \frac{3}{8}$ 2. $\frac{1}{2} \cdot \frac{3}{8}$ 3. $\frac{3}{16}$

Order of Operations


- 1. Parentheses
- 2. Exponents: $4^3 = 4 \cdot 4 \cdot 4$
- 3. Multiplication or Division (left to right)
- 4. Addition or Subtraction (left to right)

Ratios & Proportions

Inequalities

- ≥ greater than or equal to (at least)
- > greater than
- ≤ less than or equal to (at most)
- < less than

Adding Fractions

Ex. 1)
$$\frac{2}{3} + \frac{4}{5} =$$

$$= \frac{10}{15} + \frac{12}{15}$$

$$= \frac{22}{15}$$

Evaluating Area with Pi

Ex. 2) Find the area of a circle with

a radius of 5 in.
$$A = \pi r^2$$

$$A = \pi \cdot 5^2$$

$$A = 25\pi \ in^2 \ or \ 78.5 \ in^2$$

Evaluating Expressions/Equations

Ex. 3) Solve for y if
$$x = 4$$
:

$$y = 2x + 5$$

 $y = 2(4) + 5$
 $y = 8 + 5$

y = 13

Ex. 4) Solve for x if
$$y = 7$$
:

y = 3x - 6
7 = 3x - 6
+6 +6
13 = 3x

$$\frac{13}{3} = \frac{3x}{3}$$

 $\frac{13}{3} = x$

Symbolic Method

One Step Equations:

Example 1:
$$x + 5 = 12$$
 Example 2: $x - 8 = 6$ $+ 8 + 8$ $\times = 7$ $\times = 14$

Example 3:
$$\frac{5x}{5} = \frac{-20}{5}$$

 $x = -4$

Two Step Equations:

- 1. Get "x" by itself by adding or subtracting from each side.
- 2. Divide both sides by the coefficient (number next to "x").

Example 1:
$$2x + 7 = 5$$

$$\begin{array}{r}
-7 & -7 \\
\hline
2x = -2 \\
\hline
2 & 2 \\
x = 2
\end{array}$$

Example 2:
$$-5x + 10 = -20$$

$$-10 -10$$

$$\frac{-5x = -30}{-5}$$

$$x = 6$$

Summer Review - Week

1) Solve for x if y = -10:

a)
$$y = x + 12$$

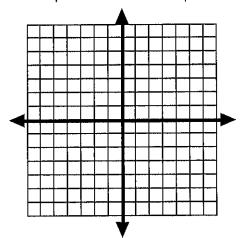
a)
$$y = x + 12$$
 b) $y = 7x - 42$ c) $y = 4x - 16$

c)
$$y = 4x - 16$$

d)
$$y = -2x - 45$$

2) Solve for y if x = 5:

a)
$$y = x + 13$$


b)
$$y = 6x - 32$$

c)
$$y = 2x - 1$$

Solve for y if
$$x = 5$$
:
a) $y = x + 13$ b) $y = 6x - 32$ c) $y = 2x - 15$ d) $y = 8x - 5$

3) Graph each coordinate pair on the graph and then indicate which quadrant or axis the point lies on.

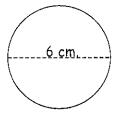
Coordinate	Quadrant
pair	or Axis
(-2, -3)	
(-3, -5)	
(-4, 1)	
(-1, 3)	
(3, -4)	
(1, 0)	
(2, -6)	
(-4, -3)	

4) Simplify: (Don't forget, absolute value is the distance from zero.)

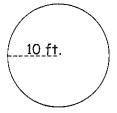
a)
$$|-24-11|$$

5) Solve for x:

a)
$$\frac{7}{6} = \frac{x}{36}$$


b)
$$\frac{10}{8} = \frac{4}{x}$$

c)
$$\frac{x}{60} = \frac{9}{10}$$


Summer Review - Week #

1) Find the circumference and area of each circle:

C = _____ or __

C = _____ or _

A = _____ or ____

A = _____ or ___

2) Solve for x if y = 7: a) y = x + 24 b) y = -2x - 26 c) y = -3x - 11 d) y = 6x - 1

a)
$$y = x + 24$$

b)
$$y = -2x - 26$$

c)
$$y = -3x - 11$$

d)
$$y = 6x - 1$$

3) Solve for y if x = -1:

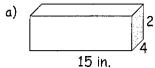
a)
$$y = x + 12$$

b)
$$y = 6x - 31$$

a)
$$y = x + 12$$
 b) $y = 6x - 31$ c) $y = 2x - 14$ d) $y = 4x - 15$

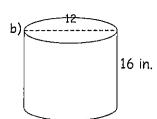
d)
$$y = 4x - 15$$

4) Try to reduce before you compute the answers! (This will help when you are trying to reduce.)


a)
$$\frac{12}{30} \cdot \frac{9}{12} =$$

b)
$$\frac{25}{24} \cdot \frac{8}{10} =$$

c)
$$\frac{72}{72} \cdot \frac{72}{72} =$$
 d) $\frac{20}{12} \cdot \frac{16}{30} =$


d)
$$\frac{20}{12} \cdot \frac{16}{30} =$$

- Summer Review Week #
- 1) Find the surface area and volume of each of the figures.

Surface Area =

Volume =

Surface Area =

Volume =

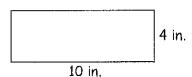
2) Solve for x if y = -3:

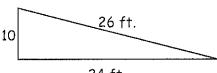
a)
$$y = x + 17$$

b)
$$y = 4x - 43$$

a)
$$y = x + 17$$
 b) $y = 4x - 43$ c) $y = -3x - 19$

d)
$$y = -2x - 46$$


3) Solve for y if x = 12:


a)
$$y = 3x + 14$$
 b) $y = 2x - 12$ c) $y = -2x - 91$ d) $y = -7x - 24$

b)
$$y = 2x - 12$$

d)
$$v = -7x = 24$$

4) Find the area and perimeter of the following figures.

24 ft.

5) Simplify:

a)
$$-\frac{4}{15} - \frac{3}{5} =$$

b)
$$\frac{3}{16} - \frac{7}{32} =$$
 c) $\frac{9}{7} - \frac{11}{6} =$ d) $\frac{7}{9} - \frac{4}{4} =$

c)
$$\frac{9}{7} - \frac{11}{6} =$$

d)
$$\frac{7}{9} - \frac{4}{4} =$$

6) Solve for x if y = 0: a) y = x + 24 b) y = 6x - 90 c) y = 2x - 22 d) y = 4x - 36

a)
$$y = x + 24$$

b)
$$y = 6x - 90$$

c)
$$y = 2x - 22$$

d)
$$y = 4x - 36$$

7) Solve for y if x = -8: a) y = -2x + 3 b) y = 3x - 39 c) y = -4x - 35 d) y = 5x - 12

a)
$$y = -2x + 3$$

b)
$$y = 3x - 39$$

c)
$$y = -4x - 35$$

d)
$$y = 5x - 12$$

8) Simplify: (Don't forget, absolute value is the distance from zero.)

a)
$$|-26-12|$$

b)
$$|81-67|$$

b)
$$|81-67|$$
 c) $|-39-41|$

d)
$$|-95+92|$$

9) Solve for x:

a)
$$\frac{9}{12} = \frac{x}{36}$$

b)
$$\frac{7}{8} = \frac{4}{x}$$

c)
$$\frac{x}{30} = \frac{4}{5}$$

10) Write an equation that represents the points in the table.

×	У
3	4
5	6
7	8

Summer Review - Week #

Name __

1) Solve for x if y = -3:

a)
$$y = 4x + 42$$

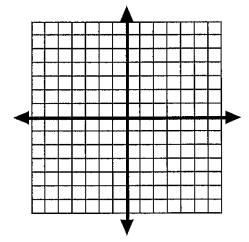
a)
$$y = 4x + 42$$
 b) $y = -2x - 4$ c) $y = 7x - 1$ d) $y = 40x - 8$

c)
$$y = 7x -$$

d)
$$y = 40x - 8$$

2) Solve for y if x = 1:

a)
$$y = -x + 3$$


a)
$$y = -x + 3$$
 b) $y = -6x - 2$ c) $y = -2x - 5$ d) $y = -4x - 26$

c)
$$y = -2x - 5$$

d)
$$y = -4x - 26$$

3) Graph each coordinate pair on the graph and then indicate which quadrant or axis the point lies on.

Coordinate pair	Quadrant or Axis
(-4, -3)	
(-6, -5)	
(-3, 1)	
(-2, 3)	
(2, -4)	
(5, 0)	
(3, -6)	
(-1, -3)	

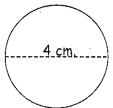
4) Simplify: (Don't forget, absolute value is the distance from zero.)

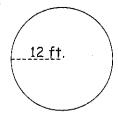
c)
$$\left|-17-79\right|$$

d)
$$\left| -9 + 25 \right|$$

e)
$$|-21-61|$$
 f) $|61-74|$ g) $|-31-79|$ h) $|-12+55|$

h)
$$|-12+55|$$


Name _____


Summer Review - Week

1) Find the circumference and area of each circle:

a)

2) Solve for x if y = 7:
a)
$$y = x + 91$$
 b) $y = 4x - 2$ c) $y = 5x - 46$ d) $y = 6x - 86$

a)
$$y = x + 91$$

b)
$$y = 4x - 2$$

c)
$$y = 5x - 46$$

d)
$$y = 6x - 86$$

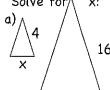
3) Solve for y if
$$x = 13$$
:

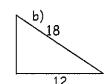
a)
$$y = -x + 3$$

c)
$$y = -3x - 75$$

a)
$$y = -x + 3$$
 b) $y = -2x - 2$ c) $y = -3x - 75$ d) $y = 8x - 36$


4) Try to reduce before you compute the answers! (This will help when you are trying to reduce.)


a)
$$\frac{18}{27} \cdot \frac{30}{40} =$$


b)
$$\frac{10}{15} \cdot \frac{24}{32} =$$

c)
$$\frac{36}{72} \cdot \frac{9}{12} =$$

d)
$$\frac{24}{18} \cdot \frac{18}{24} =$$

Name ____

Summer Review - Week #6

1) Solve for x if y = -30:

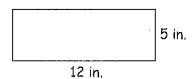
a)
$$y = x + 11$$

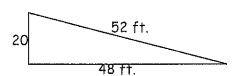
a)
$$y = x + 11$$
 b) $y = -2x - 32$ c) $y = -3x - 1$ d) $y = 5x - 10$

c)
$$y = -3x - 3$$

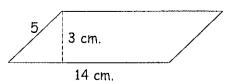
d)
$$y = 5x - 10$$

2) Solve for y if x = -6:


a)
$$y = x + 3$$


b)
$$y = -2x - 72$$

c)
$$y = 3x - 65$$


a)
$$y = x + 3$$
 b) $y = -2x - 72$ c) $y = 3x - 65$ d) $y = 4x - 26$

3) Find the area and perimeter of the following figures.

c) A =

4) Simplify:

a)
$$-\frac{8}{9} - \frac{4}{6} =$$

- b) $\frac{4}{5} \frac{7}{25} =$
- c) $\frac{1}{6} \frac{2}{10} =$
- d) $\frac{9}{10} \frac{1}{2} =$

5) Solve for y if
$$x = 3$$
:

a)
$$y = -5x + 17$$
 b) $y = 3x - 22$ c) $y = 2x - 25$ d) $y = 6x - 39$

b)
$$y = 3x - 22$$

c)
$$y = 2x - 25$$

d)
$$y = 6x - 39$$

6) Simplify: (Don't forget, absolute value is the distance from zero.)
a)
$$\begin{vmatrix} -81-17 \end{vmatrix}$$
 b) $\begin{vmatrix} 8-20 \end{vmatrix}$ c) $\begin{vmatrix} -76-29 \end{vmatrix}$ d) $\begin{vmatrix} -91+45 \end{vmatrix}$

b)
$$|8-20|$$

a)
$$\frac{1}{8} = \frac{x}{32}$$

b)
$$\frac{9}{5} = \frac{3}{x}$$

c)
$$\frac{x}{40} = \frac{3}{20}$$

X	У
-2	4
0	2
5	-3

9) Solve for x if
$$y = -5$$
:

a)
$$y = -x + 13$$
 b) $y = 2x - 23$ c) $y = -3x - 17$ d) $y = 8x - 29$

b)
$$y = 2x - 23$$

c)
$$y = -3x - 17$$

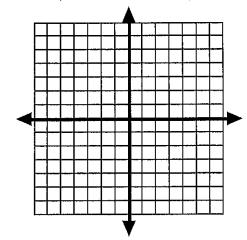
d)
$$y = 8x - 29$$

10) Solve for y if
$$x = -8$$
:

a)
$$y = x + 92$$

b)
$$y = 3x - 72$$

a)
$$y = x + 92$$
 b) $y = 3x - 72$ c) $y = -5x - 35$ d) $y = 7x - 26$


d)
$$y = 7x - 26$$

Name ___

Summer Review - Week #

1) Graph each coordinate pair on the graph and then indicate which quadrant or axis the point lies on.

Coordinate	Quadrant
pair	or Axis
(-2, -4)	
(-3, -6)	
(-4, 2)	
(-1, 4)	
(3, 0)	
(1, -1)	
(2, -7)	
(-4, -5)	

2) Simplify: (Don't forget, absolute value is the distance from zero.)

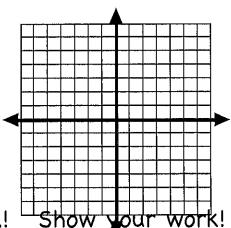
d)
$$|-26 + 71|$$

3) Solve for x:

a)
$$\frac{7}{8} = \frac{x}{48}$$

b)
$$\frac{9}{2} = \frac{8}{x}$$

c)
$$\frac{x}{80} = \frac{3}{4}$$


4) Graph the following lines on the coordinate plane:

a)
$$y = x + 5$$

b)
$$y = -2x + 6$$

c)
$$y = \frac{1}{4}x - 2$$

d)
$$y = -\frac{2}{3}x + 3$$

Show your work! Show your work!

Summer Review - Week # 8

1) Solve for x if y = -3:

a)
$$y = x + 17$$

-2x - 1

b) y = 2x - 4

- c) y = 9x + 24
- d) y =

2) Solve for y if x = 7:

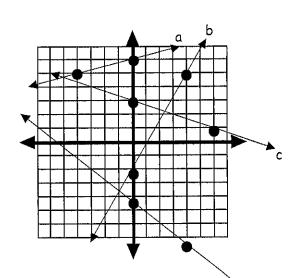
a)
$$y = -3x + 63$$

10x - 16

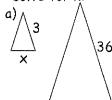
b) y = 2x - 38 c) y = 4x - 25

c)
$$y = 4x - 25$$

- d) y =
- 3) Try to reduce before you compute the answers! (This will help when you are trying to reduce.)


a)
$$\frac{12}{24} \cdot \frac{10}{5} =$$

b)
$$\frac{23}{24} \cdot \frac{14}{46} =$$


c)
$$\frac{3}{4} \cdot \frac{36}{18} =$$

4) Write an equation that represents each of the lines.

d) y =

5) Solve for x:

