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Examples of studies using wearable devices

Large observational studies

NHANES, UK Biobank, BLSA, EPIC, REGARDS, ARIC, BRHS, 
MACS, Maastricht Study, WHI/OPACH, mMARCH

Clinical trials

STURDY, ACHIEVE, BECT/BHS, COPTR, LIFE, TAAG, WHS, 
RT-CGM, JDRF-CGM, mSToPS



Ranking predictors of five-year all-cause mortality in the US

Rank Variable AUC Rank Variable AUC
1 TAC 0.770 16 sPC6 0.657
2 Age 0.757 17 TLAC6-8am 0.633
3 TLAC8-10pm 0.753 18 Education 0.611
4 MVPA 0.748 19 Drinking 0.593
5 TLAC4-6pm 0.740 20 Smoking 0.574
6 TLAC12-2pm 0.735 21 CHF 0.569
7 ASTP 0.734 22 BMI 0.550
8 TLAC10am-12pm 0.734 23 Cancer 0.559
9 TLAC2-4pm 0.730 24 Diabetes 0.556
10 ST 0.728 25 Gender 0.554
11 TLAC 0.722 26 Stroke 0.548
12 TLAC8-10am 0.684 27 CHD 0.548
13 Mobil. Prob. 0.672 28 Race 0.514
14 TLAC8-10pm 0.671 29 TLAC12am-2am 0.519
15 SATP 0.660 30 Wear time 0.459

NHANES 2003-2006, age: 50-84, total: 2969, cases: 294,  controls: 2675



Getting the organized NHANES accelerometry data

• NHANES data package (rnhanesdata): 

https://github.com/andrew-leroux/rnhanesdata

• Installing the rnhanesdata

devtools::install_github(andrew-leroux/rnhanesdata)

https://github.com/andrew-leroux/rnhanesdata


UK Biobank accelerometry at a glance



Ranking predictors of time to death in the UK

Rank Variable C Rank Variable AUC
1 TA 0.685 16 TLA10am-12pm 0.609
2 MVPA 0.681 17 SR Disability 0.601
3 RA 0.674 18 LIPA 0.601
4 M10 0.673 19 SR Health 0.598
5 TLA4-6pm 0.671 20 TLA8-10pm 0.596

6 Age 0.669 21 TLA8-10am 0.596

7 TLA6-8pm 0.653 22 Gender 0.590

8 TLA 0.653 23 Smoking 0.586

9 ST 0.652 24 High BP 0.581

10 TLA2-4pm 0.647 25 DARE 0.579

11 TLA12-2pm 0.638 26 Walk speed 0.577

12 ABT 0.625 27 L5 0.573

13 ASTP 0.618 28 TLA2-4am 0.566

14 SATP 0.616 29 BMI 0.566

15 SBT 0.610 30 TLA6-8am 0.551

UK Biobank, age: 50+, total: 82,304, cases: 849,  follow-up: 258,364 py



How much does activity add to known mortality risk factors?



What kind of sensors?



Understanding measurement
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Micro- and macro-level data












Activity intensity (counts, steps, vector magnitude)



Daily patterns of activity counts



Data: one subject + subject mean + group mean



Baltimore Longitudinal Study of Aging (BLSA)

WIT: organized the BLSA data to the 1440+ standard

• Subjects : 773 (394 females, 379 males): i
• Average number of days/subjects : 7 : j
• Daily profile : 1440 minutes : t
• Age : between 31 and 96 : x
• Data set : 5478 by 1440



A macro level of the activity data

• Yij(t) = “activity counts” for subject i, on day j, at minute t
• Interested in the time varying effect of age and BMI on activity

Yij(t) = agei β(t) + BMIi γ(t) + Wij(t)

• Use penalized splines to fit β(t), γ(t)
• Account for functional correlation within subjects
• For inference

– bootstrap of subjects
– structured functional decompositions (e.g. MFPCA, SFPCA)



Structured-function-on-scalar regression

Generalized Multilevel Function-on-Scalar Regression and Principal Component Analysis 
(2014), Goldsmith, Zipunnikov, Schrack, Biometrics



High dimensional bi/tri-variate smoothing (BLSA)

Yij(t)=m(t,xi)+Ui(t,xi)+Vij(t,xi)+εij(t)

• Requires: 
– fast new smoothers (Luo Xiao’s penalty)
– leave-one-subject-out CV (one-time data pass)



BLSA



Some thoughts on wearable devices for COVID-19

• Part of the solution
• Contact tracing in combination with testing
• Sensor-to-sensor communication (signal test-negative, record 

person, time, and duration of contact)
• Understand and improve in-hospital patient and hospital staff 

interactions to reduce transmission rates
• Use EMA (apps) to quantify contextual information on physical 

and mental effects of isolation, number, type, length of contact
• Pair with activity, temperature sensors for earlier detection of 

potential cases



Glucose profiles in Type II Diabetes during actigraphy-estimated sleep
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Johns Hopkins study (PI Naresh Punjabi)

• 124 study participants with Type II DM
• Not using insulin therapy
• HbA1c ≥ 6.5%
• Oxygen desaturation index (ODI) ≥ 15 events/hour

• Two monitors (CGM, Actiwatch) worn continuously for 7 days
• CGM every 5 minutes using Dexcom G4 
• Actigraphy using Philips Actiwatch

• estimator of sleep period
• estimator of activity intensity
• 1307 estimated sleep periods, from 4 to 15 per person



Data and model fits for six study participants



A functional Beta model for CGM

Rescaling CGM data to [0,1]  

Multilevel functional model

FPCA decomposition of the 
subject-specific mean and 
standard deviation processes



PC scores versus HbA1c

• R2 for regression with HbA1c as outcome
• mean PC1, PC2  and SD PC1 = 0.70
• mean PC1 and SD PC1 = 0.64

• Correlation 
• mean PC1 and HbA1c = 0.79
• SD PC1 and HbA1c = 0.60
• other scores and HbA1c ≤ 0.21



Importance of results

• Scores strongly correlate with HbA1c

• Scores visually quantify part of the observed variability
• Simple decomposition of the mean and SD processes
• CGM is not currently used for diabetes diagnosis
• CGM is used for disease monitoring and management

• During sleep the person cannot typically monitor their CGM
• Need for automatic and accurate approaches
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