"Wearable and Implantable Technology (WIT) with Biopharmaceutical Applications"

Ciprian M. Crainiceanu

Professor Department of Biostatistics Johns Hopkins University

Professor Crainiceanu is consulting with Bayer and Johnson and Johnson on methods development for wearable and implantable computing with applications to clinical trials. Relevant financial relationships have been disclosed through the Johns Hopkins University eDisclose system.

The presentation contains references to devices used by research collaborators of Dr. Crainiceanu for illustration purposes. The devices and the studies presented here are not related to the consulting work of Dr. Crainiceanu. Dr. Cainiceanu has no conflict of interest related to these devices. Examples of studies using wearable devices

Large observational studies

NHANES, UK Biobank, BLSA, EPIC, REGARDS, ARIC, BRHS, MACS, Maastricht Study, WHI/OPACH, mMARCH

Clinical trials

STURDY, ACHIEVE, BECT/BHS, COPTR, LIFE, TAAG, WHS, RT-CGM, JDRF-CGM, mSToPS

Ranking predictors of five-year all-cause mortality in the US

Rank	Variable	AUC	Rank	Variable	AUC
1	TAC	0.770	16	sPC6	0.657
2	Age	0.757	17	TLAC _{6-8am}	0.633
3	TLAC _{8-10pm}	0.753	18	Education	0.611
4	MVPA	0.748	19	Drinking	0.593
5	TLAC _{4-6pm}	0.740	20	Smoking	0.574
6	TLAC _{12-2pm}	0.735	21	CHF	0.569
7	ASTP	0.734	22	BMI	0.550
8	TLAC _{10am-12pm}	0.734	23	Cancer	0.559
9	TLAC _{2-4pm}	0.730	24	Diabetes	0.556
10	ST	0.728	25	Gender	0.554
11	TLAC	0.722	26	Stroke	0.548
12	TLAC _{8-10am}	0.684	27	CHD	0.548
13	Mobil. Prob.	0.672	28	Race	0.514
14	TLAC _{8-10pm}	0.671	29	TLAC _{12am-2am}	0.519
15	SATP	0.660	30	Wear time	0.459

NHANES 2003-2006, age: 50-84, total: 2969, cases: 294, controls: 2675

Getting the organized NHANES accelerometry data

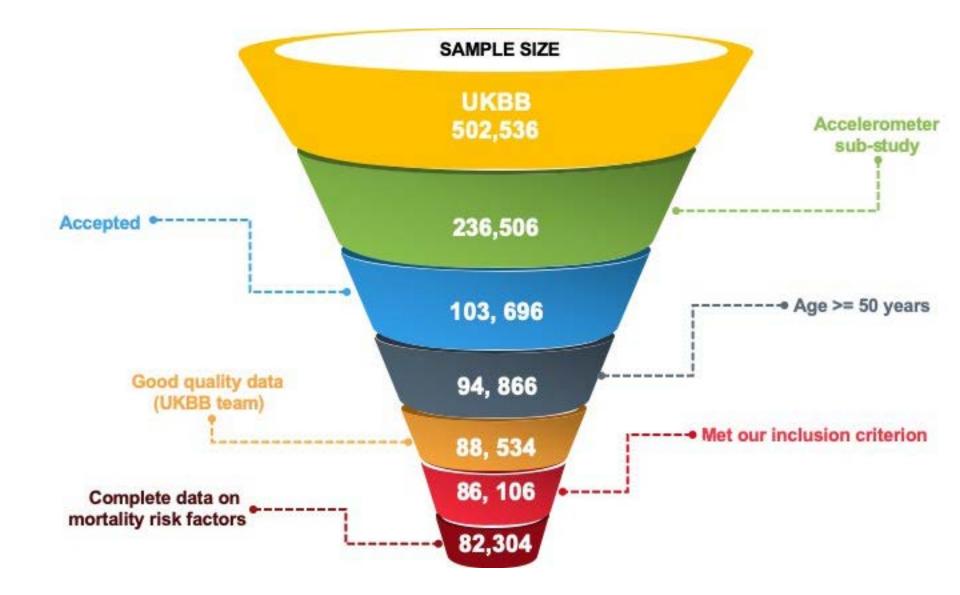
• NHANES data package (*rnhanesdata*):

https://github.com/andrew-leroux/rnhanesdata

• Installing the rnhanesdata

devtools::install_github(andrew-leroux/rnhanesdata)

UK Biobank accelerometry at a glance



Ranking predictors of time to death in the UK

Rank	Variable	С	Rank	Variable	AUC
1	ТА	0.685	16	TLA _{10am-12pm}	0.609
2	MVPA	0.681	17	SR Disability	0.601
3	RA	0.674	18	LIPA	0.601
4	M10	0.673	19	SR Health	0.598
5	TLA _{4-6pm}	0.671	20	TLA _{8-10pm}	0.596
6	Age	0.669	21	TLA _{8-10am}	0.596
7	TLA _{6-8pm}	0.653	22	Gender	0.590
8	TLA	0.653	23	Smoking	0.586
9	ST	0.652	24	High BP	0.581
10	TLA _{2-4pm}	0.647	25	DARE	0.579
11	TLA _{12-2pm}	0.638	26	Walk speed	0.577
12	ABT	0.625	27	L5	0.573
13	ASTP	0.618	28	TLA _{2-4am}	0.566
14	SATP	0.616	29	BMI	0.566
15	SBT	0.610	30	TLA _{6-8am}	0.551

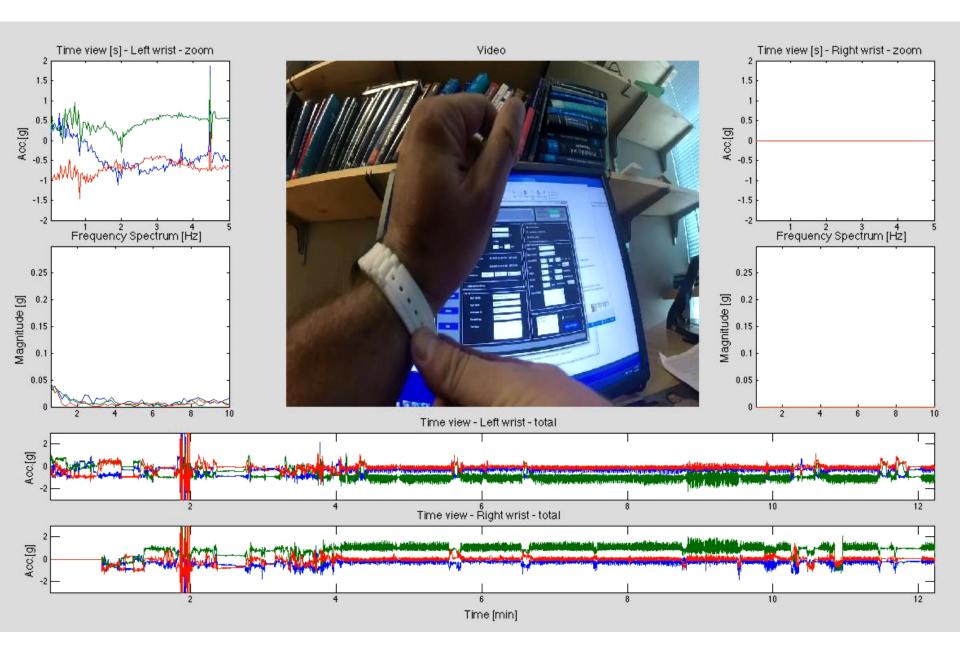
UK Biobank, age: 50+, total: 82,304, cases: 849, follow-up: 258,364 py

How much does activity add to known mortality risk factors?

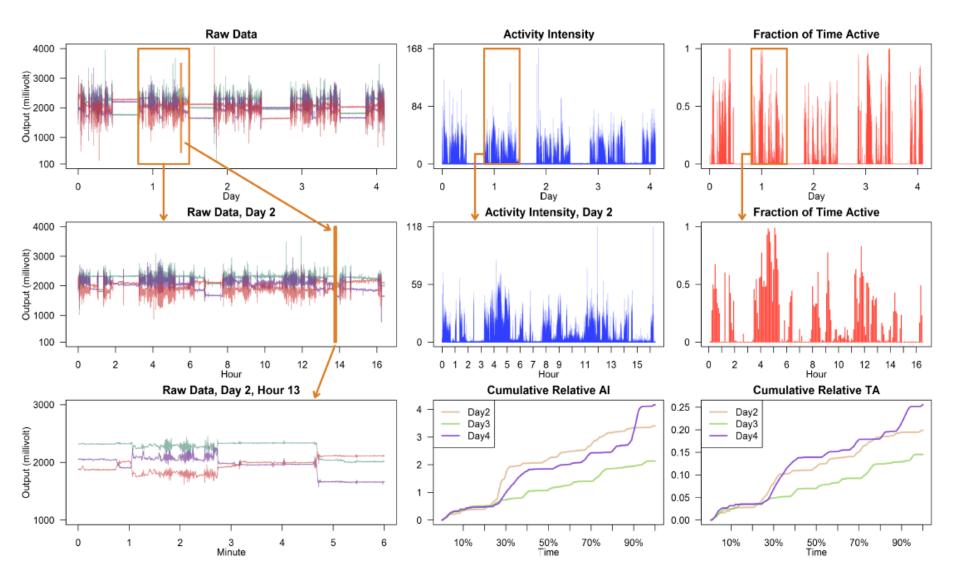
Stopping Rule: $\delta C \ge 0.001$				
Variable	Cumulative Concordance	δC	$\hat{eta} \pm 2 \mathrm{SE}(\hat{eta})$	
Age	0.669	0.669	$0.077 \ (0.065, \ 0.089)$	
Self-reported overall health	0.701	0.032		
Excellent			-0.071 (-0.278 , 0.136)	
Fair			0.178(0.001, 0.355)	
Poor			$0.531 \ (0.244, \ 0.819)$	
Cigarette Smoker	0.714	0.013		
Former			0.122 (-0.026, 0.270)	
Current			$0.851 \ (0.642, \ 1.059)$	
Gender (male)	0.723	0.009	$0.295\ (0.149,\ 0.440)$	
Longstanding illness/disability	0.730	0.006	0.300(0.144, 0.456)	
Cancer	0.733	0.003	$0.406\ (0.208,\ 0.603)$	
High blood pressure	0.735	0.002	$0.175\ (0.029,\ 0.322)$	
Injury/illness within past 2 years	0.737	0.002	0.319(0.123, 0.515)	
Relative amplitude (RA)	0.758	0.021	-0.276(-0.341, -0.212)	
TLA 4-6PM	0.760	0.002	-0.219 (-0.297, -0.141)	

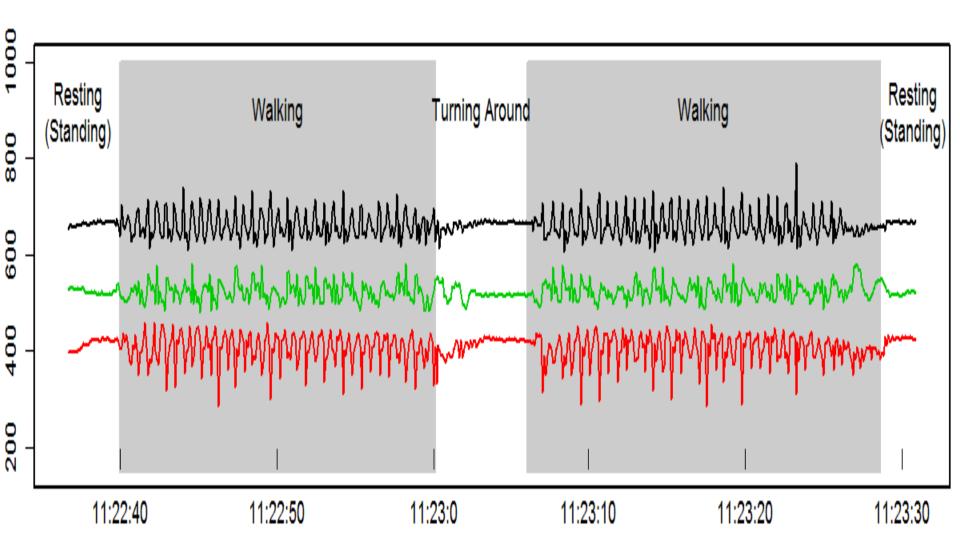
What kind of sensors?

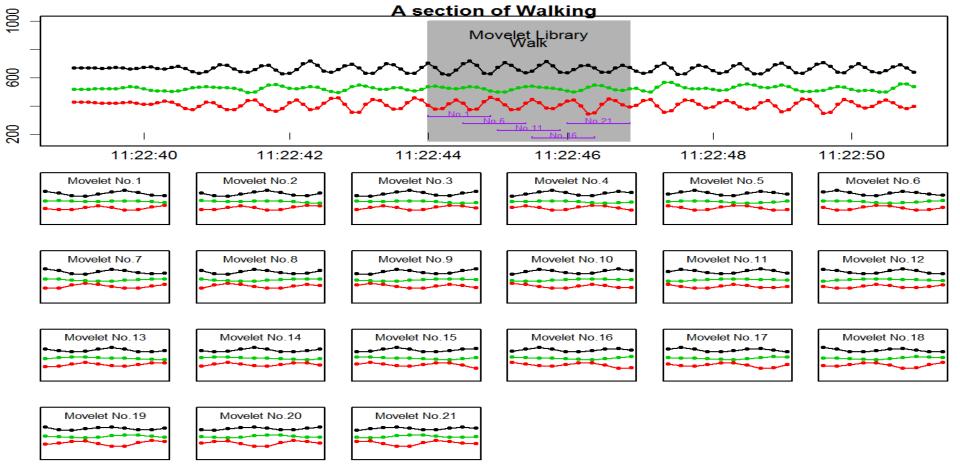
Understanding measurement



Micro- and macro-level data

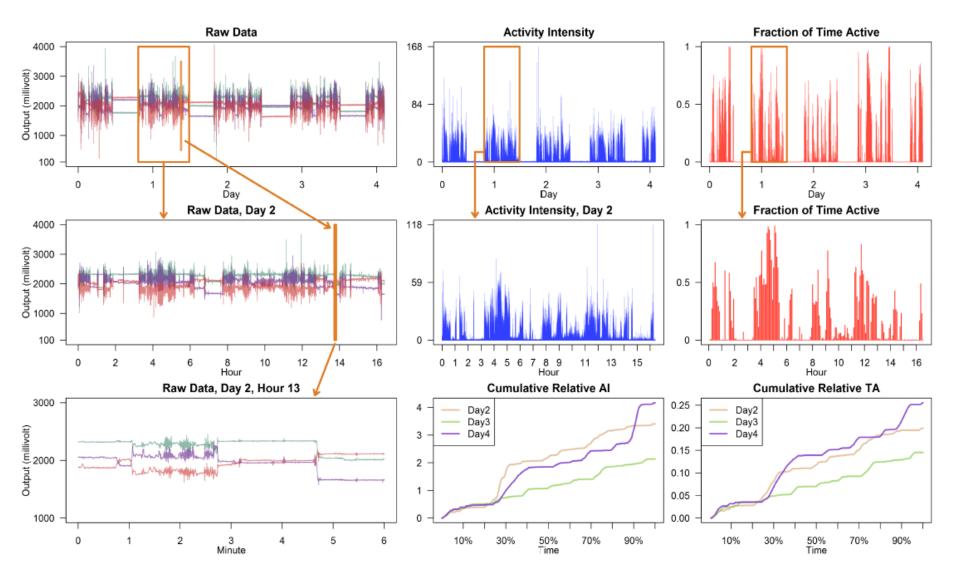




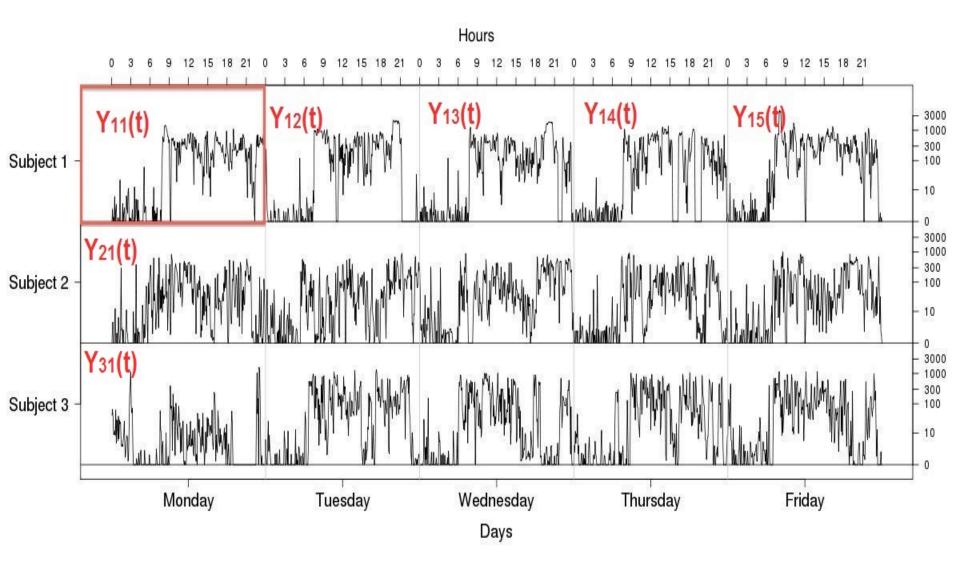


Chapter	Activity	Movelets	
\mathcal{C}_1	Activity 1	$\{M_i(t): L_i(t) = \operatorname{Act}_1\}$	
\mathcal{C}_2		$\{M_i(t): L_i(t) = \operatorname{Act}_2\}$	
:	:	:	:
\mathcal{C}_A	Activity A	$\{M_i(t): L_i(t) = \operatorname{Act}_A\}$	

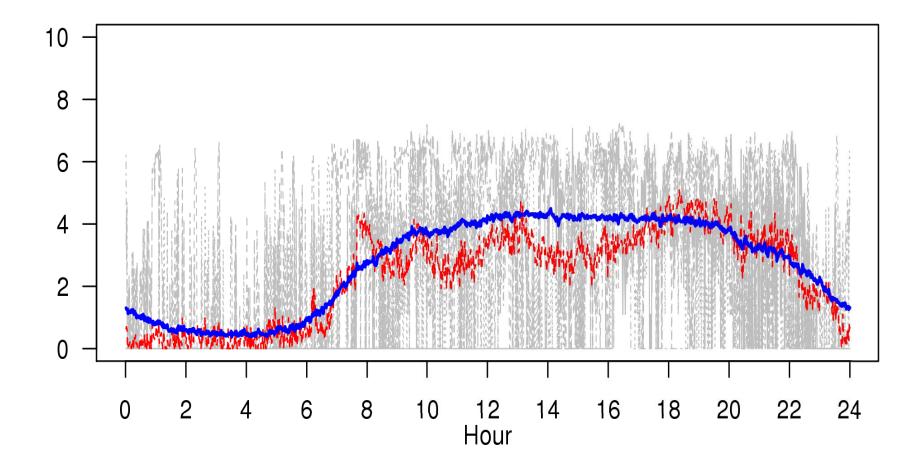
Activity intensity (counts, steps, vector magnitude)



Daily patterns of activity counts



Data: one subject + subject mean + group mean



Baltimore Longitudinal Study of Aging (BLSA)

WIT: organized the BLSA data to the 1440+ standard

- Subjects : 773 (394 females, 379 males): i
- Average number of days/subjects : 7 : j
- Daily profile : 1440 minutes : t
- Age : between 31 and 96 : x
- Data set : 5478 by 1440

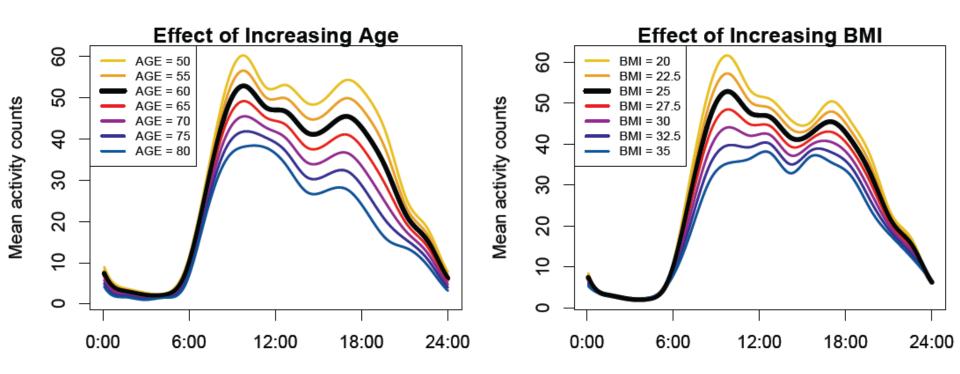
A macro level of the activity data

- $Y_{ij}(t)$ = "activity counts" for subject i, on day j, at minute t
- Interested in the time varying effect of age and BMI on activity

$$Y_{ij}(t) = age_i \beta(t) + BMI_i \gamma(t) + W_{ij}(t)$$

- Use penalized splines to fit $\beta(t)$, $\gamma(t)$
- Account for functional correlation within subjects
- For inference
 - bootstrap of subjects
 - structured functional decompositions (e.g. MFPCA, SFPCA)

Structured-function-on-scalar regression



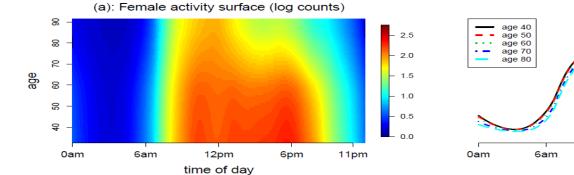
Generalized Multilevel Function-on-Scalar Regression and Principal Component Analysis (2014), Goldsmith, Zipunnikov, Schrack, Biometrics

High dimensional bi/tri-variate smoothing (BLSA)

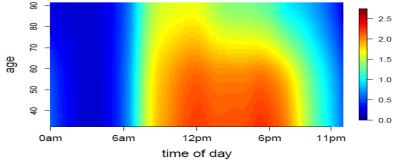
$Y_{ij}(t)=m(t,x_i)+U_i(t,x_i)+V_{ij}(t,x_i)+\varepsilon_{ij}(t)$

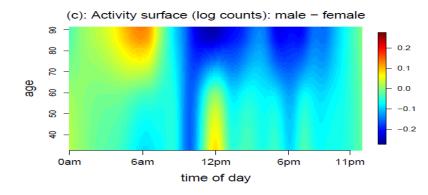
- Requires:
 - fast new smoothers (Luo Xiao's penalty)
 - leave-one-subject-out CV (one-time data pass)

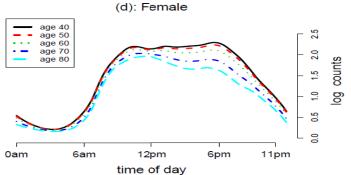
BLSA

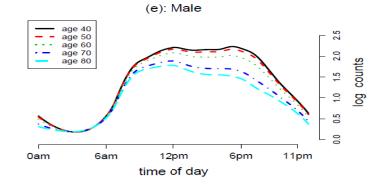


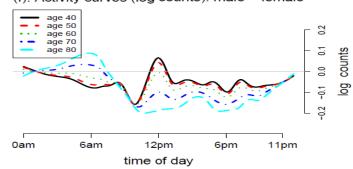
(b): Male activity surface (log counts)











Some thoughts on wearable devices for COVID-19

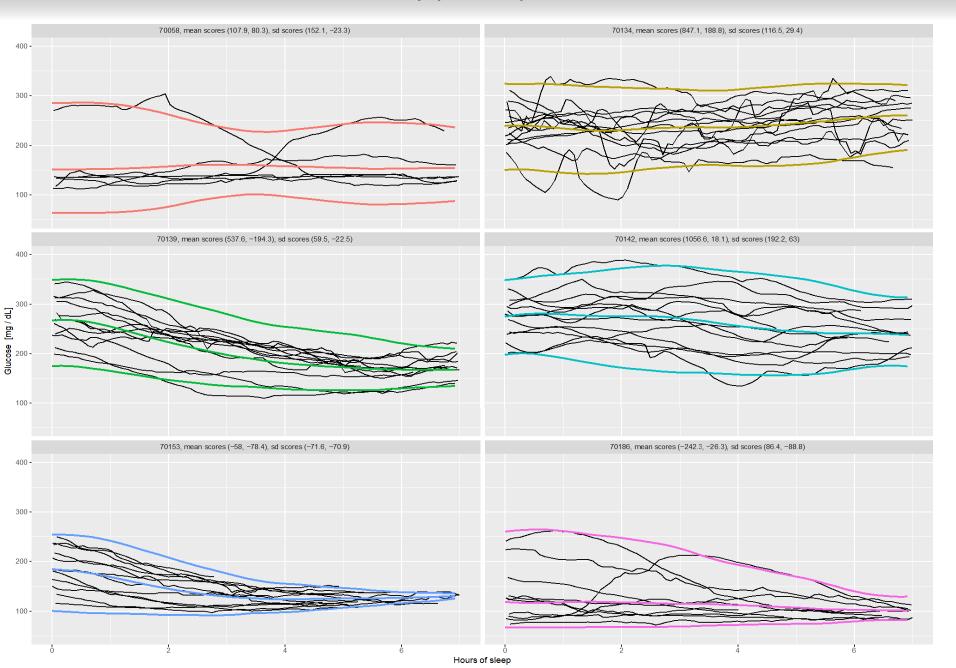
- Part of the solution
- Contact tracing in combination with testing
- Sensor-to-sensor communication (signal test-negative, record person, time, and duration of contact)
- Understand and improve in-hospital patient and hospital staff interactions to reduce transmission rates
- Use EMA (apps) to quantify contextual information on physical and mental effects of isolation, number, type, length of contact
- Pair with activity, temperature sensors for earlier detection of potential cases

Glucose profiles in Type II Diabetes during actigraphy-estimated sleep

Johns Hopkins study (PI Naresh Punjabi)

- 124 study participants with Type II DM
 - Not using insulin therapy
 - HbA_{1c} ≥ 6.5%
 - Oxygen desaturation index (ODI) ≥ 15 events/hour
- Two monitors (CGM, Actiwatch) worn continuously for 7 days
- CGM every 5 minutes using Dexcom G4
- Actigraphy using Philips Actiwatch
 - estimator of sleep period
 - estimator of activity intensity
 - 1307 estimated sleep periods, from 4 to 15 per person

Data and model fits for six study participants



A functional Beta model for CGM

$$Z_{ij}(t) \leftarrow \frac{Y_{ij}(t) - m_i}{M_i - m_i}$$

Rescaling CGM data to [0,1]

$$Z_{ij}(t) \sim Beta\{\mu_i(t), \sigma_i(t)\}$$

Multilevel functional model

$$\mu_i(t) = \sum_{k=1}^{K_{\mu}} \xi_{ik} \varphi_k(t) + \varepsilon_{it}$$
$$\sigma_i(t) = \sum_{k=1}^{K_{\mu}} \zeta_{ik} \psi_k(t) + e_{it}$$

FPCA decomposition of the subject-specific mean and standard deviation processes

PC scores versus HbA_{1c}

- R² for regression with HbA_{1c} as outcome
 - mean PC1, PC2 and SD PC1 = 0.70
 - mean PC1 and SD PC1 = 0.64
- Correlation
 - mean PC1 and HbA_{1c} = 0.79
 - SD PC1 and HbA_{1c} = 0.60
 - other scores and $HbA_{1c} \leq 0.21$

Importance of results

- Scores strongly correlate with HbA_{1c}
- Scores visually quantify part of the observed variability
- Simple decomposition of the mean and SD processes
- CGM is not currently used for diabetes diagnosis
- CGM is used for disease monitoring and management
 - During sleep the person cannot typically monitor their CGM
 - Need for automatic and accurate approaches

Literature

- Leroux, A, Di, J, Smirnova, E, et al. Organizing and analyzing the activity data in NHANES. To appear in Statistics in Biosciences, 2019
- Karas, M, Bai, J, et al. Accelerometry data in health research: challenges and opportunities. To appear in Statistics in Biosciences, 2019
- Smirnova, E, Leroux, A, et al. The predictive performance of objective physical activity measures derived from accelerometry data for five year all-cause mortality in NHANES, Unpublished manuscript
- Bai J, Goldsmith J, Caffo B, Glass TA, Crainiceanu CM. Movelets: A dictionary of movement. Electron J Stat. 2012;6:559-578
- He B, Bai J, Zipunnikov VV, et al. Predicting human movement with multiple accelerometers using movelets. *Med Sci Sports Exerc*. 2014;46(9):1859-66
- Goldsmith J, Zipunnikov V, Schrack J. Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics. 2015;71(2):344-53.
- Xiao L, Huang L, Schrack JA, Ferrucci L, Zipunnikov V, Crainiceanu CM. Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach. Biostatistics. 2014;16(2):352-67.
- Xiao L, Zipunnikov V, Ruppert D, Crainiceanu C. Fast Covariance Estimation for High-dimensional Functional Data. Stat Comput. 2014;26(1):409-421.
- Bai J, Sun Y, Schrack JA, Crainiceanu CM, Wang MC. A two-stage model for wearable device data. Biometrics. 2017;74(2):744-752.
- Gaynanova, I, Punjabi, NM, Crainiceanu CM. Monitoring continuous glucose monitoring (CGM) data during sleep. Unpublished manuscript