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Examples of studies using wearable devices

Large observational studies

NHANES, UK Biobank, BLSA, EPIC, REGARDS, ARIC, BRHS,
MACS, Maastricht Study, WHI/OPACH, mMARCH

Clinical trials

STURDY, ACHIEVE, BECT/BHS, COPTR, LIFE, TAAG, WHS,
RT-CGM, JDRF-CGM, mSToPS



Ranking predictors of five-year all-cause mortality in the US
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NHANLES 2003-2006, age: 50-84, total: 2969, cases: 294, controls: 2675

Variable
TAC

Age
TLACg.10pm
MVPA
TLAC, 6pm
TLAC 12.2m
ASTP

TLAC 16am-12pm
TLAC, 4pm
ST

TLAC
TLAC8-1 0am
Mobil. Prob.
TLAC;.10pm
SATP

AUC
0.770
0.757
0.753
0.748
0.740
0.735
0.734
0.734
0.730
0.728
0.722
0.684
0.672
0.671
0.660

Rank
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Variable
sPC6
TLACs 5am
Education
Drinking
Smoking
CHF

BMI
Cancer
Diabetes
Gender
Stroke
CHD

Race
TLAC 12am-2am
Wear time

AUC
0.657
0.633
0.611
0.593
0.574
0.569
0.550
0.559
0.556
0.554
0.548
0.548
0.514
0.519
0.459



Getting the organized NHANES accelerometry data

e NHANES data package (rnhanesdata):

https://github.com/andrew-leroux/rnhanesdata

* Installing the rnhanesdata

devtools::install_github(andrew-leroux/rnhanesdata)


https://github.com/andrew-leroux/rnhanesdata

UK Biobank accelerometry at a glance
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Ranking predictors of time to death in the UK

Rank
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Variable
TA
MVPA
RA

M10

TLA, 6pm
Age
TLAg gpm
TLA

ST

TLA 4pm
TLA2.2pm
ABT
ASTP
SATP
SBT

C
0.685
0.681
0.674
0.673
0.671

0.669
0.653
0.653
0.652
0.647
0.638
0.625
0.618
0.616
0.610

Rank
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30

Variable
TLA, 0am-12pm
SR Disability
LIPA

SR Health

TLAg 10pm
TLA8-1 0am
Gender
Smoking
High BP
DARE
Walk speed
L5
TLA2-4am
BMI
TLAg.8am

UK Biobank, age: 50+, total: 82,304, cases: 849, follow-up: 258,364 py

AUC
0.609
0.601
0.601
0.598
0.596

0.596
0.590
0.586
0.581
0.579
0.577
0.573
0.566
0.566
0.551



How much does activity add to known mortality risk factors?

Stopping Rule: 4C > 0.001

Variable Cumulative Concordance  6C 3+ 2SE(B)
Age 0.669 0.669  0.077 (0.065, 0.089)
Self-reported overall health 0.701 0.032

Excellent -0.071 (-0.278, 0.136)

Fair 0.178 (0.001, 0.355)

Poor 0.531 (0.244, 0.819)
Cigarette Smoker 0.714 0.013

Former 0.122 (-0.026, 0.270)

Current 0.851 (0.642, 1.059)
Gender (male) 0.723 0.009  0.295 (0.149, 0.440)
Longstanding illness/disability 0.730 0.006  0.300 (0.144, 0.456)
Cancer 0.733 0.003  0.406 (0.208, 0.603)
High blood pressure 0.735 0.002  0.175 (0.029, 0.322)
Injury/illness within past 2 years 0.737 0.002  0.319 (0.123, 0.515)
Relative amplitude (RA) 0.758 0.021 -0.276 (-0.341, -0.212)
TLA 4-6PM 0.760 0.002 -0.219 (-0.297, -0.141)




What kind of sensors?




%nderstanding measurement
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Micro- and macro-level data
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Activity intensity (counts, steps,
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Daily patterns of activity counts
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Data: one subject + subject mean + group mean
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Baltimore Longitudinal Study of Aging (BLSA)

WIT: organized the BLSA data to the 1440+ standard

e Subjects : 773 (394 females, 379 males): |
e Average number of days/subjects : 7 : |

e Daily profile : 1440 minutes : t

e Age : between 31 and 96 : x

e Data set: 5478 by 1440



A macro level of the activity data

* Y;(t) = “activity counts” for subject i, on day j, at minute t

* Interested in the time varying effect of age and BMI on activity
Y;i(t) = age; f(t) + BMI; A(t) + Wi(t)

* Use penalized splines to fit A(t), ®t)
* Account for functional correlation within subjects

* For inference
— bootstrap of subjects
— structured functional decompositions (e.g. MFPCA, SFPCA)



Structured-function-on-scalar regression
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Generalized Multilevel Function-on-Scalar Regression and Principal Component Analysis
(2014), Goldsmith, Zipunnikov, Schrack, Biometrics



High dimensional bi/tri-variate smoothing (BLSA)

Y;i(0)=m(tx;) +U;(t,x) +V;(tx) +e;(t)

* Requires:
— fast new smoothers (Luo Xiao’s penalty)

— leave-one-subject-out CV (one-time data pass)



BLSA

(a): Female activity surface (log counts)
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Some thoughts on wearable devices for COVID-19

e Part of the solution
e Contact tracing in combination with testing

e Sensor-to-sensor communication (signal test-negative, record
person, time, and duration of contact)

e Understand and improve in-hospital patient and hospital staff
interactions to reduce transmission rates

e Use EMA (apps) to quantify contextual information on physical
and mental effects of isolation, number, type, length of contact

e Pair with activity, temperature sensors for earlier detection of
potential cases



%Iucose profiles in Type Il Diabetes during actigraphy-estimated sleep
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Johns Hopkins study (Pl Naresh Punjabi)

e 124 study participants with Type || DM
* Not using insulin therapy
* HbA, 26.5%
e Oxygen desaturation index (ODI) > 15 events/hour
 Two monitors (CGM, Actiwatch) worn continuously for 7 days
* CGM every 5 minutes using Dexcom G4
e Actigraphy using Philips Actiwatch
e estimator of sleep period
e estimator of activity intensity

e 1307 estimated sleep periods, from 4 to 15 per person



Data and model fits for six study participants

70058, mean scores (1079, 80.3), sd scores (1521, -23.3) 70134, mean scores (8471, 188.8), sd scores (116.5, 29.4)
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A functional Beta model for CGM

Y (1)—m,
Z (1)«
/ M —-m

Z ()~ Beta{p,(1),0,(1)}
H, (1) = i«f,.kqok () +e,

(D=L W (0)+e,

Rescaling CGM data to [0,1]

Multilevel functional model

FPCA decomposition of the
subject-specific mean and
standard deviation processes



PC scores versus HbA,

* R?forregression with HbA,_as outcome
* mean PC1, PC2 and SD PC1=0.70
* mean PC1 and SD PC1 = 0.64

* Correlation
* mean PC1 and HbA,.=0.79
* SD PC1 and HbA, =0.60
* other scores and HbA,; . <0.21



Importance of results

e Scores strongly correlate with HbA,,

e Scores visually quantify part of the observed variability

e Simple decomposition of the mean and SD processes

e CGM is not currently used for diabetes diagnosis

e CGM is used for disease monitoring and management
* During sleep the person cannot typically monitor their CGM
* Need for automatic and accurate approaches
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