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Disclaimer

 This talk will make almost no mention of data, big or small
 However data are important

* “Models are as good as their assumptions” Dr Anthony Fauci,
March 2020
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The range of possible futures

* Modeling has received a lot of attention

PostEverything - Perspective

Virus models predict possible outcomes. We
can fight to stop the worst ones.

We don't need coronavirus projections to know we need to act to save lives.
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Deaths per day

An example of a model

* This is from the Institute for Health Metrics and Evaluation at the
University of Washington

* It assumes cases climb and then decline along a curve and then
fit the data to that curve in order to estimate the shape of it
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Today Containment strategy
Data for TN
n Estimates 4 deaths 4/31/2020 (1-15)
Note challenges with noisy data Date

m== [Deaths perday === Deaths per day (projected)

SCHOOL OF PUBLIC HEALTH
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Estimates can change over time

IHME - Tennessee - Daily Deaths (Mean) @
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Another sort of model

* A compartmental mechanistic

model

* You specify parameters for
the rates with which_ people . ot
move through the different S 2 e R
compartments Wyl

* And write down the equations
« Can also run simulations

[Force of Infection A = A,1,+ A,l,+ A4l 4 ‘
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An example of a mechanistic model

DRIGINAL ARTIGLI

Impact of Host Heterogeneity on the Efficacy of Interventions to
Reduce Staphylococcus aureus Carriage

Qiuzhi Chang, M5PH; Marc Lipsitch, DPhil;* William P. Hanage, PhD*

* As you may know, for some reason some people (as much
as 30%) are more likely to persistently carry S. aureus than
others

 This has implications for how easy we expect it to be to
control
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A really really simple model for a hospital

Probability a person

is colonized at omemission  There are jUSt two
feci ISSI .
admission sarameter compartments — uncolonized
\ and colonized
(1-M)(yU+C) l AyU+yC)
U C U = (1-2)(yU+yC)—pUC+vC—yU
v C = AyU+yC)+pUC—vC—yC or C = 1-U
Y Y
Discharge / |
rate - same
for both Rate
colonized
become

uncolonized
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Making it more complicated — a
heterogeneous model

. * Now you have three groups of
people

(1A UrHC) l IWUNCZ) » 1 are refractory to colonization
. » 2 are intermittent carriers

T' l » 3 are persistent carriers
Y Y

(]-;LS)(YU_’,‘FYCS)l h(YU3+yCy) Ul ( 1—4,) (?Ul + ?(l ) _ﬁUl((l +G3)+v2C; _?Ul
P(C,+Cs) (.':1 = A (yU, +7C, )+ pU,(Cy + C5)—v,Cy—yC,

U, C; :
< Us = (1-43)(yU; +7C;5) —pU;(Co+ G3 ) + v3C3 —y U;

V3
Yl wlr“f Cs = A3(yUs+7C3) 4 U4 (Cy + C3) —v3C3—yCs
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Model Parameter Value Description
Homogeneous B 1= C £ 0.028 day ! Transmission parameter
U+C
A=0:0232day "

v In(2)/35 day Natural clearance rate

Y 7 days ' Discharge rate
Heterogeneous p 2 = G day! Transmission parameter assuming 20% persistent, 30%

P 4G 0.115 day intermittent, and 50% non-carriers (Figure 2)

A = 0:0.866 day '

ﬁ‘ 1 = G ) X " X3f°
UG 038 v, 0367 +vs
Ai=0:1 X Xsh”

— +
038" +vy+y 03f +vi+y

(x, and x; are the proportions of

intermittent and persistent carriers)

vy In(2)/14 day '
Vs In(2)/154 day '
Y 7 days '

Transmission parameter for 30% overall carriage prevalence in
populations with varying proportions of carrier classes (Figure 3)

Natural clearance rate for intermittent carriers
Natural clearance rate for persistent carriers
Discharge rate
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Why are we doing this?

» Efforts to control S. aureus have had mixed results
* Not clear the role of compliance, among other things

* We wanted to ask about the impact of heterogeneity on the
effort needed to control

« Considered hand hygiene (reduces transmission rate)

* And decontamination (moves people from C back to U at a
higher rate)
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Heterogeneity makes it harder to control

(a) (b)

30 — homogeneous 30
= = heterogeneous
25 25
9 9
< 20 . < 20
™ . g. [
E \ o !
= A = [
3 \ § :
5 15 — \\ S 15 — :
S ' g '
1
E 10 by ® 104 ,
o \ o
\ I
\ ]
\ ]
\ |
5 - 4 549 ,
\ [
1 1
1 ' = homogeneous
0 — ' 0 - = = heterogeneous
T T T T T T T T T T T
0 20 40 60 80 100 0 50 100 150 200
% Reduction in Beta Frequency of Decolonization (1/days)

This is assuming that each of the groups in the heterogeneous model are
uncolonized on admission
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Why is that? The top line answer is

Intuitive
* Population prevalence of S.
aureus colonization is ~ 30%

* |f fully half the population is
naturally resistant to being
colonized, the pathogen has
to be more transmissible
overall to achieve the same
prevalence in the fraction it
can colonize.

If each infected person spreads

the coronavirus to two other R

people, the chain of infections

would grow exponentially. f?\

C/ Q (
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Avoiding even one social
transmission early on in the chain Infection
could significantly reduce the A avoided
number of infections. <\}‘\x
c/ S % o w %
o |2 @ ® ® . 2] R
® ¢ 00000000000 00 O
(slelalslatadalpiiainlalatelaleislaiaslslslslelslal e lElale s ]
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What can we learn from this for the
p a n d e m i C? Epidemiology and Transmission of COVID-19 in Shenzhen

China: Analysis of 391 cases and 1,286 of their close contacts

SCHOOL OF PUBLIC HEALTH

. Qifang Bi, Yongsheng Wu, Shujiang Mei, Chenfei Ye, Xuan Zou, Zhen Zhang, Xiaojian Liu,
°
The u nce rtaln r0|e Of Lan Wei, Shaun A Truelove, ' Tong Zhang, Wei Gao, Cong Cheng, Xiujuan Tang,
Ch'ld ren |n transm|SS|On Xiaoliang Wu, Yu Wu, Binbin Sun, Suli Huang, Yu Sun, Juncen Zhang, Ting Ma, ©& Justin Lessler,
Teijian Feng

e Children get less sick. doi: https://doi.org/10.1101/2020.03.03.20028423
But they Can become Contact-based Symptom-based

. surveillance surveillance Unknown/other Total
| nfe Cted Variable Value (N=87) (N=292) (N=12) (N=391) P-value
sex female 63 (72.4%) 131 (44.9%) 10 (83.3%) 204 (52.2%)  <0.001
male 24 (27.6%) 161 (55.1%) 2 (16.7%) 187 (47.8%)
A B age 0-9 13 (14.9%) 6 (2.1%) 1(8.3%) 20 (5.1%) <0.001
s0s c0 10-19 5 (5.7%) 6(2.1%) 1(8.3%) 12 (3.1%)
20-29 11 (12.6%) 23 (7.9%) 0 (0.0%) 34 (8.7%)
70-79 70-79 30-39 15 (17.2%) 71 (24.3%) 1(8.3%) 87 (22.3%)
co_ss so6e 40-49 9 (10.3%) 49 (16.8%) 2 (16.7%) 60 (15.3%)
50-59 10 (11.5%) 63 (21.6%) 1(8.3%) 74 (18.9%)
g 0% 50-59 60-69 20 (23.0%) 60 (20.5%) 6 (50.0%) 86 (22.0%)
S a0 4049 70+ 4 (4.6%) 14 (4.8%) 0 (0.0%) 18 (4.6%)
§: e . severity mild 18 (20.7%) 82 (28.1%) 2 (16.7%) 102 (26.1%) 0.03
moderate 66 (75.9%) 180 (61.6%) 8 (66.7%) 254 (65.0%)
20-29 20-29 severe 3 (3.4%) 30 (10.3%) 2 (16.7%) 35 (9.0%)
1010 1010 symptomatic no 17 (19.5%) 8(2.7%) 0 (0.0%) 25 (6.4%) <0.001
yes 70 (80.5%) 284 (97.3%) 12 (100.0%) 366 (93.6%)
0-9 0-9 fever no 25 (28.7%) 34 (11.6%) 2 (16.7%) 61 (15.6%) <0.001
000 004 008 012 0 3000 6000 8000 12000 yes 62 (71.3%) 258 (88.4%) 10 (83.3%) 330 (84.4%)

Proportion of population Number of confirmed cases
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A model of covid-19 in Wuhan

« Construct a model with
POLYMOD mixing of age groups

* Run an SIR model with the age-
distribution of China, the
population of Wuhan and an

incubation period of 5 days. S --E
e RO = 2 overall
e If kids do not transmit, how

e group of contact

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) 80+

transmissible must it be in adults? Age group

Work with James Hay, David Haw, Jess Metcalf and Michael Mina - submitted
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Model predicted cumulative incidence (line)
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Work with James Hay, David Haw, Jess Metcalf and Michael Mina - submitted
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RO= 2

Orange line POLYMOD
mixing

Blue line is expectation if
contacts made in school
are removed

Green line is age
dependent
transmissibility
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Inferred variation in transmission with age

0.15 1
0.14 4
0.13 1
0.12 1
0.11 1
0.10 +
0.09 4
0.08
0.07 1
0.06 -
0.05 -
0.04 4
0.03 1
0.02 -+
0.01 -

0.00 | I | ]
0 20 40 60 80

Age group

Transmissibility

Work with James Hay, David Haw, Jess Metcalf and Michael Mina - submitted

From the green line on
the previous slide

In order to explain
observations from
Wuhan, it is necessary to
have a profoundly strange
profile of transmissibility
with age
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Radically different frequencies of
transmission pairs among age groups

A Infector

POLYMOD

[0,20)

Infectee

Age dependent transmission

Infector

[20,65)

[0,20)

[0.20)

[20,65)

[20,65)

65+

Ve

65+

65+

Work with James Hay, David Haw, Jess Metcalf and Michael Mina - submitted

Infectee

[0,20)

y

»

[20,65)

65+

= HARVARD
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Proportion of adult-adult contacts removed

Implications for control - o

0.00 0.25 0.50 0.75 1.00

>
w

No school 1001 1001 School closure,
e @ N o < . .
closure, 2 el 2 e POLYMOD mixing.
POLYMOD £ £ You need remove
mixin 5 050- 5 0501 /—\ fewer adult
S oz 2 25 w contacts to achieve
£ =H- /\__\/\——\\_M the same result
0.00 4 0.00 A
[0,:10) [1 0:20) [20:30) [30:40) [40:50) [50,.60) [60,.70) [70:80) 8(I)+ [0,I10) [10,.20) [20:30) [30:40) [40,.50) [50,.60) [60,.70) [70:80) 8(I)+
Age group Age group A .
s C, but with
ASA' but C 1004 D 1004 ,
with age ' ' contacts
. 075 - / between school

dependent 0787

sl %\/\ /~/\ age children
transmission ] ]
> W oe° /_/—/_J///\\\ removed
/\//’_/__Q_——/‘\. /\’,”——__.__//\,

0.00 1 0.00 4

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60.70) [70,80) 80+ [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) 80+
Age group Age group

0.25 1

Work with James Hay, David Haw, Jess Metcalf and Michael Mina - submitted
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Summary

* In the presence of uncertainty around the role of different age
groups in transmission, interventions need to target all age
groups

* Determining the role of children in transmission is essential

« Some household studies suggest it is limited but note bias —
because primary cases are more likely to be detected in older
age groups

 Also note that transmission in schools may be different in
character from in households

* We will be getting data soon — schools are planned to reopen in
some places
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Health care, the pandemic and the non-
covid cohort

SCHOOL OF PUBLIC HEALTH

* A feature of the pandemic has been outbreaks in healthcare

* A large number of early cases of infection in both Wuhan and
Italy were healthcare workers

* Protection of the non-covid cohort is essential

ORIGIMAL ARTICLE

Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility

Melissa M. Arons, R.N., Kelly M. Hatfield, M.S.P.H., Sujan C. Reddy, M.D., Anne Kimball, M.D., Allison James, Ph.D., |esica R. Jacobs, Ph.D., Joanne Taylor, Ph.D., Kevin
Spicer, M.D., Ana C. Bardossy, M.D., Lisa P. Oakley, Ph.D., Sukarma Tanwar, M.Med., Jonathan W. Dyal, M.D., et al., for the Public Health-Seattle and King County and
CDC COVID-19 Investigation Team"
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Modeling transmission in the non-covid
COhOrt Work by Joel Miller and Xueting Qiu

* We developed a deterministic SEIR model for the general
population as shown, including a subset of presymptomatic and
asymptomatic infections

3 aN®_~ 4 *,
S E R
(1‘?) | Vi1
4 };? 1 I

[Force of Infection A = A1, + A,l,+ A,l4 ‘
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Extending to health care

N : Yia

i Aals + 44l ;

. Co(Aala+ A4y ) + ‘ qh"{'re IA,F -

s Copldalap+ Al p)/Np+ i e
P Cue (Aala* Aqly)Np i W+Y, - :
F .. JJJ:.‘ IT,P | !l

! ~ ‘{

LRF

N =S+p(E+1,+1)+R
N = Anticipated size of the cohort
b _' Removed from the cohort

Cid+
CordAalap* Adly )Ny +

These are the health care workers
(HCWs)

%)),

v

e lan &_ o IR
SH Chan “AIJ'.H"' ﬂ-,h_,.;}.fNH l EH. i / H
: it

I HARVARD
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These are the
—— (presumed) uninfected
patients

Yia

IT,H

Model is a stochastic simulation TR TSR]
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The risk of SARS-CoV-2 transmission in the healthcare setting and
potential impact of cohorting strategies

Joel C. Miller'™, Xueting Qiu?, William P. Hanage?

* https://www.medrxiv.org/content/10.1101/2020.04.20.20073080v1 .full
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- susceptible general population m— nublic FOI
. — infected general population - = Patient FOI
a d Id ea + Susceptible HCW m— HCW FOI
 Infected active HCW
 Quarantined HCW
+ Recovered HCW

Susceptible Patient
Infected Patient

]\

Population Dynamics Force of Infection (FOI)
- 0.40
0.35 1
0.8 1 0.30
_ S 06 e
(a) No Testing; £ 9 -
NO PPE g 0.4 1 0.15
o
0.2 A
0.05 1
0.0
0.00 1

L
100

Time (days) Time (days)



SCHOOL OF PUBLIC HEALTH

®e-e CENTER for COMMUNICABLE Disease DyNamics ?II-.}R(;’ I-II‘:R

. Population Dynamics Legend FOI Legend
[esting alone helps .o — picro
- infected general population -= = Patient FOI
+ Susceptible HCW w— HCW FOI

— but doesn’t solve

 Infected active HCW

 Quarantined HCW

+ Recovered HCW
Susceptible Patient
Infected Patient

Ill

Population Dynamics Force of Infection (FOI)
0.40
1.0 A
0.35
0.8 1 0.30
C 0.25 -
- O 0.6 — "\
(b) 5% Testing; £ O oap. nl k‘n
L
a
No PPE O 041 0.15 1
o
0.2 1 a1
o ~— 0.05
0.0 4 -.-_-.':'.":-’ﬁ" o TSR ¥ ..
: 4 ; ' . : 0.00 +—
0 20 40 60 80 100 0

Time (days) Time (days)
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- susceptible general population m— nublic FOI
O r I I WS - infected general population -= = Patient FOI
== Susceptible HCW w— HCW FOI

- |nfected active HCW
=== Quarantined HCW
- Recovered HCW

- = Susceptible Patient
- |nfected Patient

Population Dynamics Force of Infection (FOI)
0.40
1.0 1
0.35
0.8 1 0.30
= 0.25 -
. O 06-
(¢) No Testing; £ O sin:
HCWs PPE only § os- sl
o
0.2 0.10 -
0.05 -
0.0 1
0.00 1

0 20 40 60 80 100

Time (days) Time (days)
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P P E f . Population Dynamics Legend FOI Legend
O r patl e n tS - susceptible general population m— nublic FOI
- infected general population -= = Patient FOI
+ Susceptible HCW w— HCW FOI

and HCWs

 Infected active HCW

 Quarantined HCW

+ Recovered HCW
Susceptible Patient

- |nfected Patient

Population Dynamics Force of Infection (FOI)
0.40
1.0 1
0.35
0.8 0.30
. g C .
(d) No Testing; S os 0
Both HCWs S E 0.20 -
and Patients PPE © °° 0.15 1
8.3+ 0.10 -
0.05 4
0.0 1
. T . T 1 ; 0.00 T 5 7 Ry Y
0 20 40 60 80 100 0 20 40 60 80 100

Time (days) Time (days)
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Testing and PPE

(e) 5% Testing;
Both HCWs
and Patients PPE

1.0 1

0.8 4

Proportion

0.0 -

Population Dynamics Legend

RN

Population Dynamics

e
_.-—_--v-.w #41% e ﬂ“:—“;:“ _,._. ‘::b -
0 20 a0 60 80 100
Time (days)

FOI

- susceptible general population
infected general population

+ Susceptible HCW
 Infected active HCW
 Quarantined HCW
- Recovered HCW
Susceptible Patient
- Infected Patient

I HARVARD
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FOI Legend

m— nublic FOI
== = Patient FOI
e . HCW FOI

Force of Infection (FOI)

0.40

0.35 1
0.30 A
0.25 A
0.20 A
0.15 -
0.10 A

0.05 1

-

0.00

0 20 40 60 80 100

Time (days)

SCHOOL OF PUBLIC HEALTH
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Smaller cohorts

* By making your
cohorts smaller, both
for HCWs and patients
you can limit the
consequences of virus
introduction

« Known for some time,
see the Cruciform
Building from UCL
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Effects of sub-cohorting

* Run 500 simulations with same parameters

* Results are the distributions of the final size of the outbreak in
the HCWs

T,
[ @
i : III
: | .
E
3 | 1
i " [ 2 I |
1 14 ) J \ | | ’l
0 + . - . - a ! I - |-I ” : y
00 02 04 08 08 10 0.0 0.2 0.4 0é o8 10
Proporton of HOWsS infected Proportion of HOWs infected

(E) ijuf.if;nt = 800; *"?\’rH(.?H' = 200 (i) *"?\Tputiﬁni = 1600; *'TVH(.TH' = 400
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Effects of sub-cohorting

« Smaller cohorts reduce the probability of a large outbreak in
HCWs

* This is in the absence of other control measures, and does not
iInclude any action taken to prevent transmission

4.0

1n|
g 25
E

L5

L0

0.0 " T o
il i 1.0 0.0 02 0.4 06 o8
Proportion of HOWs infectied Proporion of HOWS infected

(¢) Npatient = 200; Nucw = 50 (d) Npatient = 400; Ngcw = 100
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Effects of sub-cohorting

* In very small cohorts, you approach a bimodal distribution

* This suggests benefit of small cohorts especially when the force
of infection from the community is low (infrequent introductions)

2.0
;_: 15
o -
| F
1.0
oS
—_— - — R . 00 4— — — —
o 0.6 0.8 1.0 0.0 0.2 0.4 0.6
Proporton of HOWs infected Proportion of HOWs infected

(H) Npatient = 90; Ngcw = 12 (]J) Npatient = 100; Ngcw = 25
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Issues

* We do not model what happens to the patients removed from
the model after diagnosis of covid

* We do not model any mitigation strategies in the community
* Like all models, dependent on assumptions
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Work on COVID-19 (Coronavirus)

The Center for Communicable Disease Dynamics is closely monitoring the progress of COVID-19 {coronavirus). Explore what CCDD has
discovered and published about the Virus below.
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Publications Op-eds and Other #scicomm Twitter Feeds

Research published by the CCDD. Mational coverage written by and featuring The latest updates from CCDD faculty.
CCDD faculty.
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