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Microbiome and its Function

conditions seen in paediatrics that have been asso-
ciated with changes in the gut microbiota (table 1).8–
16

Inflammatory bowel disease (IBD)—This is one of
the most extensively studied human conditions asso-
ciated with the gut microbiota. The composition of
the gut microbiota differs between healthy individuals
and patients with IBD both in terms of species rich-
ness (ie, numbers of bacterial species) and species
abundances (ie, number of individuals per species). As
bacteria are identified by sequencing, rather than by
functional characteristics in the culture laboratory, the
individual bacterial species or genus (depending on
the classification of sequence data) are commonly
referred to as operational taxonomic units in micro-
biota research.
Studies have reported patients with IBD to have

decreased bacterial diversity, and reduced abundances
of Firmicutes and Bacteroidetes and an increased
abundance of Proteobacteria compared with healthy
individuals.17 Latest research suggests that IBD patho-
genesis is due to the interaction of environmental
factors (eg, smoking, diet and stress) and the host’s
genetic susceptibility, which is influenced by com-
mensal microbiota, which activates either pathogenic
or protective immune responses.18 Evidence from
mouse models provides further support for the role of
gut microbiota in pathogenesis of IBD.19

Necrotising enterocolitis (NEC)—The pathogenesis
of NEC is multifactorial although the gut microbiota

is thought to play a crucial role. Studies in both
humans and animal models have described changes in
the gut microbiota including a reduction in bacterial
diversity and increased abundances of Proteobacteria
in preterm infants with NEC compared with healthy
preterm infants.20 However, the results have been
inconsistent across studies, and to date, no single
causative set of microorganisms has been identified.
Atopic diseases—Conditions such as eczema, asthma

and food allergies are increasing in incidence. This is
often linked to the hygiene hypothesis. It is thought
that the lack of early-life exposure to microbial anti-
gens in hygienic developed countries alters the micro-
biota composition of the infant gut, which disrupts
immune development causing allergic disease.21 For
example, species like Bacteroides fragilis reportedly
induces immunological tolerance through immune
receptor signalling pathways.22 Also the infant gut
microbiota is affected by environmental factors
including pets, residing in rural homes and siblings
shown to have protective effects against asthma and
allergies.23 The concept that altered microbiome
composition influences childhood allergic disease sus-
ceptibility is further supported by data from epi-
demiological studies that report higher prevalence of
atopic diseases in infants delivered by caesarean sec-
tions, formula fed infants and those exposed to
antibiotics.24

Type 1 diabetes—The gut microbiota is involved in
regulation of the metabolic–immune axis.8 Research

Figure 1 The human microbiome plays an important role in control of vital homeostatic mechanisms in the body. These include
enhanced metabolism, resistance to infection and inflammation, prevention against autoimmunity as well as an effect on the gut–
brain axis. SCFA, short-chain fatty acid.
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The Human Microbiome and Cancer

Rajagopala (2017 Cancer Prevention Research).

Question - microbiome-based individual treatment assignment?
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Microbiome, metabolites and immunology

Levy, Blacher and Elinav (2017, Current Opinion in Microbiology)

Question: how microbiome produces different metabolites?
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Shotgun Metagenomics

Slide from Katie Pollard

Question: can we understand the growth dynamics?
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Microbiome configurations/features in shotgun

metagenomic data

Static Features

Composition of taxa.

Microbial genes/gene set or pathway abundance.

Diversity of microbes.

Metagenomic SNPs/structural variants.

Dynamic Features

Bacterial growth rates

Dynamic interactions

Statistical questions - how to quantify and model these features?
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Topics to be discussed

Basic microbiology science
Estimation of bacterial growth dynamics based on genome
assemblies.

Functional microbiome
Deep learning approach for predicting biosythetic gene clusters.
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Bacterial Growth Dynamics in Metagenomics

Pienkowska et al., 2019.
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Bacterial DNA Replication and Growth Dynamics
Uneven coverage of read counts reveals bacterial growth rates.

growth dynamics for species with complete genome sequences
Korem et al. 2015 Science.

growth dynamics for genome assemblies - new species
Brown et al. 2016 Nature Biotechnology
Gao and Li, 2018 Nature Methods
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Genome assemblies from shotgun data
Sangwan et al (2016): Microbiome
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Illustration of the Statistical/Computational Problem
For a given bacteria:For a given bacteria:

11



Illustration of the Statistical/Computational Problem
For a given bacteria:For a given bacteria:
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Illustration of the Statistical/Computational Problem
For a given bacteria:For a given bacteria:
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Coverages of contigs - 6 PLEASE samples
Top 3: normal. Bottom 3: IBD patients.
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PCA vs Coverages - 6 PLEASE samples
Top 3: normal. Bottom 3: IBD patients.
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Optimal permutation recovery

For a given assembly bin (species)

Permuted Monotone Matrix Model: X is GC-adjusted log-read
counts along the genome - n samples and p contigs,

Yn×p = π(Xn×p), Xn×p = Θn×p + Zn×p

where X,Θ, Z ∈ Rn×p, π is a column-permutation operator, and

Θ ∈ D =

{
Θ = (θij) : 0 < θi,j ≤ θi,j+1 <∞,∀i, j

}
.

Z: some additive noise (i.i.d. Gaussian, N(0, σ2)).

The goal is to recover π based on observed Y .

Solution: 1st PC, π̂ = r(ŵ>1 Y ) as an estimate of π, ŵ1 is loading
coefficients of the 1st PC.
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Theoretical Properties (Ma, Cai and Li 2020 JASA)
Linear growth model - the parameter space for Θ:

DL =

{
Θ ∈ Rn×p :

θij = aiηj + bi, where ai, bi ≥ 0 for 1 ≤ i ≤ n,

0 ≤ ηj ≤ ηj+1 for 1 ≤ j ≤ p− 1

}
,

A key quantity:

Γ(Θ) =

(
n−1

n∑
i=1

a2i

)1/2

· min
1≤i<j≤p

|ηi − ηj |.

Theorem (Exact Recovery)

Suppose the noise Z are i.i.d. N(0, σ2). Then under some mild
conditions, whenever

Γ & σ

√
log p

n
,

we have π̂ = π with probability at least 1− p−c.
15



Estimation of PTR

Proposed estimators of peak/trough coverage: Θ̂max/ Θ̂min:

1 Obtain the optimal permutation estimator π̂ to reorder the
columns (contigs);

2 Fit simple linear regression for each row (sample);

3 Define Θ̂max and Θ̂min as the fitted maximum and minimum
values.

=⇒ DEMIC algorithm.

Optimal and adaptive estimation of PTR and the two extreme values
(peak and trough) for general growth model.
Ma, Cai and Li: 2020 submitted
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DEMIC Software
Dynamics Estimator of Microbial Communities (DEMIC)
https://github.com/scottdaniel/sbx demic (Scott Daniel)!"#$%"&$'&
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Penn PLEASE Study (Lewis et al. (2015): Cell Host & Microbe)
PLEASE (Pediatric Crohn’s Disease) study at Penn: 90× 4 shotgun
metagenomic samples and 26 normal children (ave 11×106 paired-end reads).
Outcome: Fecal calprotection (FCP) (reduction below 250mcg/g).

Metabolomics: fecal metabolites.

Week 1: Stool Microbiome, Dietary recalls x 3, FCP  

Week 4: Stool Microbiome, Dietary recalls x 3, FCP  

Week 8: Stool Microbiome, Dietary recalls x 3, FCP, PCDAI  

90 Children with Active  
Crohn’s Disease 

Diet Therapy (n=38) Anti-TNF Therapy (n=52) 

Treatment at Discretion 
of Treating Physician 

Baseline: Stool Microbiome, Dietary recalls x 3, FCP, PCDAI  

Anti-TNF: 26
(50%) a reduction
in FCP below 250
mcg/g.

Enteral Diet: 12
(32%) a reduction
in FCP below 250
mcg/g.

Lewis, Chen et al.

(2015): Cell Host

& Microbe.
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Species with differential growth dynamics

DEMIC estimated growth dynamics for 278 species, 20% in 50 or more
samples.

The assembly quality and marker lineage of seven contig clusters with
different growth rates in healthy and Crohn’s disease samples of
PLEASE data set (FDR< 0.05)
Contig cluster Completeness Contamination Control vs Marker lineage

Crohn’s

metabat2.187 61.7% 0 High kBacteria
metabat2.239 58.5% 1.8% High oClostridiales
metabat2.250 66.6% 0.8% High pProteobacteria
metabat2.259 79.3% 2.1% High kBacteria
metabat2.270 72.0% 2.0% High fLachnospiraceae
metabat2.369 68.8% 2.8% High fLachnospiraceae
metabat2.55 55.2% 1.9% Low oClostridiales
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Shift of growth dynamics after treatment
oClostridiales, oClostridiales, kbacteria (uncharacterized)
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Summary and software

Dynamics Estimator of Microbial Communities (DEMIC)
https://github.com/scottdaniel/sbx demic (Scott Daniel)
(Gao and Li, 2018 Nature Methods)

Optimal permutation recovery for monotone permuted matrix.
(Ma, Cai and Li, 2020 JASA)
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Biosynthetic gene clusters (BGCs)
Bioactive secondary metabolites (SMs) - antibiotics, anticancer
reagents, etc
SMs - encoded by genes that cluster together in a genetic package,
referred to as a biosynthetic gene cluster (BGC).

promoter was inserted upstream of the operon starting with

VF0844. Introduction of this construct into E. coli resulted in a

yellow-pigmented strain that produced a new compound with

an absorption maximum at 425 nm (Figure 3C). Purification of

the V. fischeri compound and analysis by a combination of 1D-

and 2D-NMR experiments and high-resolution MS revealed

a structure with a similar scaffold to the E. coli APE but a

4-hydroxy-3,5-dimethylphenyl head group (Figures 3B and

A

Escherichia coli CFT073, APEEc (c1186 - c1204)

Flavobacterium johnsonii ATCC 17061, flexirubin (Fjoh_1075 - Fjoh_1110)

Vibrio fischeri ES114, APEVf (VF0841 - VF0860)

Xanthomonas campestris ATCC 33913, xanthomonadin (XCC3998 - XCC4015)

flexirubin (R = H, CH3, Cl)
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Figure 3. APE Gene Clusters Comprise the Largest Known BGC Family

(A) Heat map and dendrogram of all 1,021 detected APE family gene clusters, based on Clusters of Orthologous Groups generated by OrthoMCL (Li et al., 2003)

using our adapted version of the Lin distancemetric (Lin et al., 2006) that includes sequence similarity. Light gray indicates the presence of one gene from a COG,

whereas darker gray tones indicate the presence of two or three genes from a COG. The two BGC subfamilies that functioned as the starting point of our analysis

(subfamilies 1 and 2) are shown in green and red, respectively, while the smaller BGC subfamily that includes the xanthomonadin and flexirubin gene clusters

(subfamily 3) is shown in blue. The positions of the two experimentally targeted gene clusters (Ec for Escherichia coli CFT073 and Vf for Vibrio fischeri ES114) as

well as the Xanthomonas campestrisATCC 33913 xanthomonadin (Xc) and Flavobacterium johnsonii ATCC 17061 flexirubin (Fj) gene clusters are indicated below

the heat map. See Figure S5 for a version with more detailed annotations.

(B) Chemical structures obtained for the APE compounds from E. coli and V. fischeri, and the previously determined chemical structures of xanthomonadin and

flexirubin. Note the difference in polyene acyl chain length as well as the distinct tailoring patterns on the aryl head groups.

(C) Bacterial pellets from strains harboring APE gene clusters showing the pigmentation conferred by aryl polyenes.

(D) Genetic architecture of the four characterized aryl polyene gene clusters. The inset in the Flavobacterium johnsonii flexirubin gene cluster is a subcluster

putatively involved in the biosynthesis of dialkylresorcinol (Fuchs et al., 2013), which is acylated to an APE to form flexirubin.

See Data S1 for schematics of all 1,021 APE gene clusters from (A).

416 Cell 158, 412–421, July 17, 2014 ª2014 Elsevier Inc.

Cimermancic et al (2014, Cell)
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Identification of all BGCs in bacterial genomes
Training Data set:
1,984 BGC gene sequences from MIBiG v1.4 database, ORF/gene
prediction, Pfam domains. 3,685 Pfam domains.
1,868 BGCs with 3-250 Pfam domains, 1094 species
Background: 5,666 reference genomes from NCBI database, 11,427
unique Pfam domains. nnon−BGC = 10, 128 controls.

Goal: identifying all the BGCs in these 5666 bacterial genomes.
23



DeepMBGC - deep learning and embedding
Embedding: Pfam domain names, Pfam clans, Pfam function
descriptions (Liu, Li and Li, in preparation) ⇒ LSTM RNN

Pfam

102-d PfamEmb 64-d ClanEmb

Top 64 chars of summary
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 e
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-d
 e

m
b

o
f c2

 

…

30 size 3 filters with padding,
then maxpooling

960-d ClarEmb

1126-d Emb

Pfam 1 Pfam 2 Pfam 3 …… Pfam 248 Pfam 249 Pfam 250

Concatenation

Emb 1 Emb 2 Emb 3 Emb 248 Emb 249 Emb 250

LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

Softmax

Labels
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DeepMBGC - Data Augmentation
On expectation, a sequence has one Pfam domain being replaced, each
epoch with new perturbed data.

Data Argument
On expectation, a sequence will have one pfam being replaced.

Pfam 1 Pfam 2 Pfam 3 …… Pfam L

Pfam 2_i Pfam 2_nPfam 2_1

Each Pfam will be replaced by its Similar Pfams with prob 1/L  

Positive/Fake pfam sequence with length L
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DeepMBGC - Embedding, binary case

26



DeepMBGC - Embedding, multi-class case

27



DeepMBGC Prediction Results - Pfam level

Testing set: 13 genomes with 291 known BGCs never used in training,
10x13=130 artificial genomes with 291 known BGCs fixed in original
genomes, other replaced with non-BGCs.

Table: Prediction performance at the Pfam level

DeepBGC DeepMBGC DeepMBGC+
Data Argumentation

precision 0.831(0.0069) 0.774(0.0053) 0.833(0.0042)
recall 0.748(0.0025) 0.883(0.0018) 0.852(0.0016)
f1 0.788(0.0029) 0.825(0.0026) 0.842(0.0024)
roc 0.984(0.0002) 0.989(0.0003) 0.989(0.0002)
pr 0.881(0.0023) 0.919(0.0017) 0.921(0.0016)

DeepBGC: Hannigan et al., 2019 NAR.
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DeepMBGC Prediction Results - BGC level

BGCs - infered based on estimated max Pfam probabilties, length
between 3 and 250 Pfams.

Table: Prediction performance at the BGC level, F1 score

DeepBGC DeepMBGC DeepMBGC+
Data Argumentation

overlap>0.0 0.74(0.0026) 0.808(0.0030) 0.817(0.0029)
overlap≥0.2 0.736(0.0023) 0.805(0.0028) 0.815(0.0029)
overlap≥0.4 0.711(0.0029) 0.784(0.0028) 0.799(0.0030)
overlap≥0.6 0.661(0.0037) 0.733(0.0052) 0.753(0.0041)
overlap≥0.8 0.556(0.0051) 0.609(0.0051) 0.645(0.0044)
overlap= 1 0.268(0.0048) 0.218(0.0065) 0.286(0.0062)
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DeepMBGC multiclass prediction
Testing set: 160 new BGC were deposited to MiBIG v1.5

Multi-class
accuracy:
74.8%
Recall rate:
77.5%
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All BGCs predicted by DeepMBGC

There are 161,026 predicted BGCs in all 5666 bacteria genomes.

RiPP 41%
Non-ribosomal peptides (NRPs) 12.5%
Polyketide (PKS) 9.8%
Saccharide 9.7%,
Terpene 4.8%
other 21.6%

RiPP: Ribosomally synthesized and post-translationally modified
peptides. Conserved genomic arrangement of many genes.
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All BGCs predicted by DeepMBGC
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BGCs in Species Stratified by Phylum
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Summary of DeepMBGC

DeepMBGC

- deep learning for multi-class BGC discovery, better performance than
DeepBGC (Hannigan et al., 2019 NAR)

- can make multi-class prediction
- database for BGCs coded by each species
- discovery of novel natural products
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