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Alcohol Use Disorders (AUDs)

I Alcohol use disorders (AUDs) are a major public health
problem that accounts for significant morbidity and mortality.

I 18 million Americans suffer from an AUD during a one-year
period.

I The estimated annual expense attributable to the excessive
consumption of alcohol is $185 billion

I Excessive use of alcohol is the third leading preventable cause
of death in the U.S. (Mokdad et al. 2004), associated with
multiple adverse health problems.

I However, only 7.1% of those with AUD received any
treatment in the past year.



Treatment of AUD

I Counseling and referral to community support groups are the
most prevalent forms of treatment for AUD in the U.S, e.g.,
twelve-step program by Alcoholics Anonymous.

I Three medications have been approved to treat AUD:
disulfiram, acamprosate, and naltrexone.

I However, many patients have limited or no response to these
medications (e.g., Anton et al. 2006; Chen et al. 2012),
which leads to physicians’ unwillingness to prescribe
medications - an important barrier to the dissemination of
pharmacotherapy treatments (Oliva et al. 2011; Weber 2010).

I Developing new and more effective medications to treat
alcoholism remains a high priority for the National Institute on
Alcohol Abuse and Alcoholism (NIAAA, Willenbring 2007).



Personalized Medicine in Alcohol Trials

I Traditionally, pharmacotherapy for treating alcohol
dependence has been developed and evaluated using
population data, a “one size fits all” approach that leaves
little room for individualized treatment.

I However, considerable heterogeneity exists among people with
alcohol addiction, suggesting a need for personalized
treatment approaches based on individual features, e.g.,
genetic variation (Heilig et al. 2011).

I The goal of personalized medicine is “to develop new
therapies and optimize prescribing by steering patients to the
right drug at the right dose at the right time” (Hamburg and
Collins 2010).

I Ongoing research has informed studies that match alcohol
medications to patients based on genotype (Kranzler and
McKay 2012).



Subgroup Identification

I Clinical question of interest in alcohol studies: how can we
identify patient subgroups which are most responsive to a
medication (which may fail in general population)?

I On the other hand, other medical fields (e.g., cancer) with
many medications to treat a disease/symptom: what is the
best medication to use for a given patient?

I However, these two questions are two sides of the same coin

I Of note, here we will NOT consider dynamic treatment
regimen.



Motivating Example

I Johnson et al. (2011) conducted a 12-week double-blind
controlled trial of ondansetron vs. placebo, in 283
alcohol-dependent subjects.

I Ondansetron has been used to prevent nausea and vomiting
caused by cancer chemotherapy and radiation therapy

I New indication for ondansetron to treat alcohol dependence

I Individuals with both the 5’-HTTLPR LL and rs1042173 TT
genotypes who received ondansetron had better drinking
outcomes than all other genotypes and treatment groups
combined.

I Johnson et al. (2013) also examined 19 SNPs in HTR3A and
HTR3B genes, for their ability to predict ondansetron
treatment outcome



Data

I Outcome: Longitudinal daily drinking levels summarized as
weekly percentage of heavy drinking days (PHDD)
I Heavy drinking is defined as >= 5 standard drinks (roughly 14

grams of pure alcohol) for men and >= 4 for women in a day

I Treatment: Ondansetron vs. Placebo
I Other Covariates

I Time in weeks (could be nonlinear), age of onset, race, sex,
age, PhD base90 (heavy drinking percentage in past 90 days
before baseline)

I 21 genetic polymorphisms: e.g., aa, Aa, AA (non-ordered
categorical)

I We are interested in finding interaction between treatment
and covariates, and thus identify subgroups with enhanced
treatment effect



PHDD Trajectories of Two Arms (Johnson 2011)
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Ondansetron Effect

I Overall there is no ondansetron effect in the whole population

I Nonlinear drinking trajectory in both groups

I Subgroup identification: can we find some subgroups (based
on covariates) which respond to ondansetron?



Literature Review of Subgroup Identification

I Model-based recursive partitioning (MoB, Zeileis et al. 2008),
interaction trees (IT, Su et al. 2008, 2009), STIMA
(Dusseldorp et al. 2010), SIDES (Lipkovich et al. 2011),
virtual twins (VT, Foster et al. 2011), GUIDE (Loh et al.
2016)

I A tutorial has been published by Lipkovich et al. (2017):
Tutorial in biostatistics: data-driven subgroup identification
and analysis in clinical trials

I Hou et al. (2015) applied IT and VT methods to the
Ondansetron clinical trial data, using the difference between
treatment period and baseline measure as a scalar outcome



Why tree-based methods for interaction?

I Tree-based methods include interactions by construction,
therefore, we do not need to specify the model structure in
advance (in contrast to including all p-way interactions in a
regression model)

I Tree-based methods more naturally accommodate
discontinuous relationships and nonlinear interaction effects

I Graphical presentation of tree structure shows the interaction
effects more intuitively



General Framework of Tree-based Methods

I At each step, greedily search among covariates for splitting

I Growing: large tree to avoid missing deeper interaction

I Pruning: model selection (Leblanc and Crowley 1993)



Splitting for Interaction Tree (IT) for Scalar Outcome

I A bisection of data is induced by a binary question on some
covariate X.

yi = β0 + β1Ti + β2Zi + γTi × Zi + ϵi (1)

I yi : outcome for subject i ;
I Ti : treatment;
I Zi = IXi≤c : node for a continuous covariate Xi , where c is the

cutpoint to be estimated

I Among all permissible splits, select the split such that the
treatment effect differs the most between its two resultant
child nodes, i.e., the greatest interaction with the treatment.

I That is, a natural measure for this interaction effect is
equivalent to testing H0 : γ = 0



Problem of interest: Interaction tree for longitudinal
trajectories (IT-LT)

I Most of current studies considered cross-sectional studies, or
condensed the longitudinal outcome to a scalar one

I In this talk we will consider the extension of interaction tree
(IT) to the longitudinal outcome

I We are interested in finding interaction between treatment
and covariates, and thus identify subgroups with enhanced
treatment effect in longitudinal studies with possible nonlinear
trajectories
I How to consider the trajectories of drinking, which could be

nonlinear?
I Account for correlation among repeated measures.



Our Method: IT-LT (Longitudinal Trajectories)

I At each split: four types of curves of drinking trajectories
I ylc : control group, left node
I ylt : treatment group, left node
I yrc : control group, right node
I yrt : treatment group, right node

I Treatment effect curve = treatment curve - control curve
yle = ylt − ylc , yre = yrt − yrc



The Mixed Effects Model with Splines

I Bk(t): the k-th knot for the spline basis of time

I ai ∼ N(0, σ2
a): subject specific random effect

I Ti = 1 indicates treatment group

I Under Ha:

yl(tij) = ai +
K∑

k=1

[βlc
k Bk(tij) + ITi=1β

le
k Bk(tij)] + ϵij .

yr (tij) = ai +
K∑

k=1

[βrc
k Bk(tij) + ITi=1β

re
k Bk(tij)] + ϵij .

(2)

I Under H0: β
le
k = βre

k for all k

I Testing of heterogeneity of treatment effect ⇐⇒ testing
model fit of H0 vs. Ha



Test statistics in mixed effects based IT-LT

I Normality assumption of random effects N(0, σ2
a) and error

terms N(0, σ2
e )

I Repeated measures for subject i , yi = (yi1, yi2, ..., yini ) is
distributed as yi ∼ (µi , σ

2
aIni

ITni
+ σ2

e Ini )

I µi is defined in Eqn. (2)

I Likelihood L̂0, L̂1 is the product of the multivariate normal
densities

I Likelihood ratio test at each split is

Λ = 2 log
L̂1

L̂0
.

I The degree of freedom of the LRT statistics in IT-LT depends
on the number of knots.



The pruning process and control parameters

I To avoid missing important higher-order interactions, it is
preferable to build a large tree at the beginning and then
gradually prune the tree.

I As in Su et al. (2008) and Hou et al. (2015), we use the
split-complexity pruning algorithm originally developed by
LeBlanc and Crowley (1993)

I The tuning parameter in the pruning process is set to be
λ = log(n), corresponding to BIC.



Nonlinear longitudinal trajectories

I We adopt the natural cubic splines bases (i.e., setting the
highest polynomial power to 3) with additional boundary
constraints

I Natural cubic spline is a common choice to achieve adequate
smoothness in approximation and computational convenience.

I Other spline basis function can be used, e.g., truncated power
basis for simplicity (Chen et al. 2013)



Knot selection

I There are 12 repeated measures for each subject in our real
data. We experimented many choices of the number of knots
through simulation

I It turns out that the results are generally satisfactory and
robust when a medium number of knots (e.g., K = 4 to 6
knots out of 12 observations in the ondansetron trial data) are
used.

I K = 5 is used in the Simulation and Application Studies.



Simulation settings

I Six settings, each has 100 datasets

I 250 subjects, 13 observations for each subject (12 weeks).

I Each observation has probability of 0.1 to be missing

I Randomly (p = 0.5) assign to treatment/control group

I
yij = µi (tij) + ai + ϵij . (3)

where ai ∼ N(0, 0.1), ϵij ∼ N(0, 0.2)



Simulation settings

I Six Bernoulli(0.5) covariates and four N(0, 1) covariates

I In the first 4 settings, a continuous covariate, X7, is chosen to
be the true splitting variable in most settings, and 0.7 is the
splitting point: X7 > .7 vs. X7 ≤ .7.

I In Setting 5, X7 and X1 are chosen to be the true splitting
variables

I In Setting 6, X7, X1, and X2 are chosen to be the true
splitting variables



Table 1: Simulation settings in one level tree

Setting Partition (z) Trt Trajectory

1 X7 <= 0.7 0 0.55 + 0.45× e−tij/2

1 e−tij/16

X7 > 0.7 0 e−tij/8

1 0.3 + 0.7× e−tij/2

2 X7 <= 0.7 0 0.7 + 0.3 ∗ cos(0.9tij)
1 max(0.7 + 0.3 ∗ cos(1.2tij)− 0.03tij , 0)

X7 > 0.7 0 0.25 + 0.75× e−tij/2

1 e−tij/8

3 X7 <= 0.7 0 e−tij/8

1 0.5 + 0.5× e−tij

X7 > 0.7 0 0.25 + 0.75× e−tij

1 e−tij/4

4 0 0.3 + 0.7× e−tij/2

1 e−tij/8



Simulation settings
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Simulation settings
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Simulation settings
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Simulation settings
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Choice of control parameters

I The maximum depth of the tree: dmax = 4.

I The least number of samples needed for a split to be
considered: ssplit = 30.

I The number of cut-off points: for continuous variables, we set
Ncut = 20 equally spaced cut-off points. For discrete variable,
the power set (collection of all subsets) will be considered.



Comparison to IT with scalar outcome

We compare the performance of IT-LT with several scalar based
interaction tree methods

I “avg” method calculates the difference between the average
measure after baseline and the baseline measure as a scalar
variable.

I “last-1” method simply uses the difference between the last
weekly observation and the baseline measure.

I “last-4” method uses the difference between the mean of the
last 4 weekly measures (last month) and the baseline measure
(Falk et al. 2010)



Evaluation criteria

I rootrate : proportion of trees built

I size: number of non-terminal nodes

I hitroot : proportion of root nodes that “hit” (selecting the
right variable)

I hittotal : proportion of all nodes that “hit” (Su et al. 2008,
2011)

I Rand index (Rand 1971): Rand index between fitted group
memberships and true group memberships



Simulation results

Table 2: Performance of different methods in one level tree

Setting method hitroot hittotal rootrate size Rand index

1 IT-LT 1.00 0.98 1.00 1.02 0.98
avg 0.98 0.80 1.00 1.42 0.91
last1 0.76 0.67 1.00 1.34 0.78
last4 0.50 0.38 1.00 1.84 0.66

2 IT-LT 1.00 0.98 1.00 1.02 0.98
avg 1.00 0.87 1.00 1.22 0.95
last1 1.00 0.89 1.00 1.14 0.93
last4 0.58 0.44 1.00 1.86 0.67

3 IT-LT 1.00 0.98 1.00 1.02 0.98
avg 0.44 0.31 1.00 2.16 0.63
last1 1.00 0.90 1.00 1.18 0.95
last4 1.00 0.95 1.00 1.14 0.96

4 IT-LT – – 0.00 0.00 –
avg – – 0.82 3.41 –
last-1 – – 0.84 2.44 –
last-4 – – 0.76 3.40 –



Table 3: Simulation settings for two level tree

Setting Partition (z) Trt Trajectory
5 X1 = 1,X7 <= 0.7 0 0.7 + 0.3 ∗ cos(0.9tij)

1 max(0.7 + 0.3 ∗ cos(1.2tij)− 0.03tij , 0)
X1 = 1,X7 > 0.7 0 0.25 + 0.75× e−tij/2

1 e−tij/8

X1 = 0,X7 <= 0.7 0 0.25 + 0.75× e−tij

1 e−tij/2

X1 = 0,X7 > 0.7 0 e−tij/8

1 0.5 + 0.5× e−tij/2

6 X7 > 0.7,X1 = 0 0 0.7 + 0.3 ∗ cos(0.9tij)
1 max(0.7 + 0.3 ∗ cos(1.2tij)− 0.03tij , 0)

X7 > 0.7,X1 = 1 0 0.25 + 0.75× e−tij/2

1 e−tij/8

X7 <= 0.7,X2 = 0 0 0.25 + 0.75× e−tij

1 e−tij/2

X7 <= 0.7,X2 = 1 0 e−tij/8

1 0.5 + 0.5× e−tij/2



Simulation results

Table 4: Performance of different methods in two level tree

Setting method hitroot hittotal rootrate size Rand index

5 IT-LT 1.00 1.00 1.00 3.14 0.98
avg 1.00 0.82 1.00 1.24 0.72
last1 1.00 0.99 1.00 1.86 0.83
last4 1.00 0.97 1.00 2.36 0.86

6 IT-LT 1.00 1.00 1.00 3.26 0.95
avg 0.96 0.90 1.00 2.52 0.78
last1 1.00 0.97 1.00 2.22 0.84
last4 1.00 0.99 1.00 2.18 0.85



Application to Ondansetron Data

I Johnson et al. (2011) conducted a 12-week double-blind
controlled trial of ondansetron vs. placebo, in 283
alcohol-dependent subjects.

I Outcome: Longitudinal daily drinking levels summarized as
weekly percentage of heavy drinking days (PHDD)

I Other Covariates
I Time in weeks, Age of onset, race, sex, age, PhD base90

(drinking history)
I 21 genetic polymorphisms: coded as 0, 1, 2 (e.g., aa, Aa, AA):

resulting in a total of 321 genotype combinations



Application to Ondansetron Data

I Due to missingness in genotype information, only 251 subjects
were included in the analysis

I Missing longitudinal observations are imputed by the last
value carried forward method.

I Random intercept is included to account for heterogeneity in
repeated measures



PHDD Trajectories of Two Arms (Johnson 2011)
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Figure 1: Tree built in the Ondansetron trial on weekly PHDD data
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Figure 2: Nodes identified by IT-LT method on weekly PHDD data
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Application Results

I The largest node (# 4) with 130 (52%) subjects:
rs1176719 !=AG and baseline heavy drinking rate > 0.41
I Early separation, Ondansetron is more effective

I Node 5 (99 subjects): rs1176719=AG:
I After week 5, treatment is worse than placebo

I Node 3 (22 subjects): rs1176719 !=AG and baseline heavy
drinking rate ≤ 0.41:
I Two curves cross each other around week 5

I A remarkably strong placebo effect (compared to baseline) is
observed in this study across all subgroups



Mechanisms

I rs1176719 is located in the intron 4 region (NM 000869.5) of
the HTR3B gene, close to an intron-exon boundary (Hou et
al. 2015).

I Heavy drinking at baseline could affect the treatment effect

I These nonlinear trajectory patterns identified by the IT-LT
subgroups provide valuable insight into the heterogeneous
effects of ondansetron and inform future studies.



Discussion of mixed effects model based IT-LT

I IT-LT corrects the deficiency in scalar based methods, which
could be flawed when nonlinear trajectories exist

I IT-LT is based on splines, which is more flexible and correctly
identifies the subgroups

I Able to accommodate sophisticated longitudinal models

I CAUTION: This is a POST-HOC analysis: a Phase III trial
should be conducted to confirm this personalized medicine
result



Future Work

I Apply to larger clinical trial data, e.g., the Ocular
Hypertension Treatment Study with 1636 subjects

I GEE approach

I Take into account efficacy and safety simultaneously

I Prediction of individual treatment effects

I Extensions to longitudinal observational studies warrants
future research efforts, e.g., using the facilitating score (Su et
al. 2012)

I Rather than last value carried forward method to impute the
missing values after dropout, more advanced methods, e.g.,
joint random effects model of longitudinal drinking and time
to dropout could be considered in the future work to tackle
the potential informative drop-out issue.



R package

I R package available: https://github.com/yishuwei2019/itlt
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Thank You!


