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Outline
• Introduction of Functional Data Analysis (FDA)

• Part I: Novel analytic approaches to investigate minute-level 
actigraphy and association with physical function

• Part II: Dynamic predictions in Bayesian functional joint 
models for longitudinal and time-to-event data: An application 
to Alzheimer’s disease

• Conclusion and remarks 
3



Some common statistical regression methods
• Logistic regression: binary outcome
• Cox regression: time-to-event outcome
• Poisson regression: event counts as outcome

What if either the outcome or covariate is a function, or both?
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Functional Data
• Functional Data: data for which units of observation are 

functions
• These functions can be curves (1D), images (2D or 3D), or 

higher dimension object data (e.g., structure or functional 
MRI).
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Examples of Functional Data
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Examples of Functional Data
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Functional Regression
Regression analysis involving functional data.

1. Functional predictor regression (scalar-on-function)
Ex: how is the minute-level actigraphy activity 
associated with the physical function?

2. Functional response regression (function-on-scalar)
Ex: how do sex and age change the minute-level 
actigraphy activity?

3. Function-on-function regression (function-on-function)
Ex: how is the minute-level actigraphy activity 
associated with the MRI data?
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Part I: Novel analytic approaches to 
investigate minute-level actigraphy and 
associations with physical function
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Motivation
• Low levels of physical activity and declined physical 

function have implications for dementia risk, premature 
disability in older adults. 

• Accelerometers provide objective and convenient 
measurement of physical activity.

• Previous studies examined the associations between 
accelerometry-derived physical activity and physical 
function, but they reduced data into average means of total 
daily physical activity (e.g., daily step counts). 

• We used FDA methods to investigate the association 
between physical activity and physical function.
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Physical performance Across the Lifespan Study (PALS)

• Longitudinal cohort study of community-dwelling adults 
aged 30-90+ residing in southwest region of North Carolina.

• Participants completed an extensive functional battery and 
wore an accelerometer as a measure of activity for 7 days. 
Assessments were completed at baseline and again 2 
years later with 69% retention rate.
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Outcomes
1. Gait Speed (m/sec): measures how quickly someone can walk 

within a specified distance (i.e., 4 meters) in normal pace and 
rapid pace.

2. Single Leg Stance (sec): measures the time participants are able 
to stand unassisted on one leg with eyes open.

3. Chair Stands in 30 seconds (n): measures lower extremity 
strength. The score is the number of completed stands in 30 
seconds.

4. 6-minute Walk (feet): the total distance walked in 6 minutes as a 
measure of aerobic endurance and capacity.
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Data Summary at Baseline (n=669)
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Vector Magnitude Data (activity counts)

Subject ID: 7
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Vector Magnitude Data (activity counts)

Subject ID: 715



Objectives

Aim 1: Investigate the functional associations 
between physical activity features and physical 
functions (gait speed, single leg stance, chair stands, 
and 6-minute walk test) at baseline.
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Lowess Curves for VM by High/Low Rapid Pace
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Functional Regression for Baseline Rapid Pace

Coefficient Estimate SE t value Pr(>|t|)

Intercept 2.976 0.131 22.791 < 2e-16

Male Sex* 0.172 0.030 5.746 1.4e-08

Age* -0.015 0.001 -13.311 < 2e-16

BMI* -0.013 0.003 -3.885 1.13e-04

White Race 0.068 0.048 1.438 0.151
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Estimated Coefficient Function for Baseline Rapid Pace
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Findings of Aim 1
Increased physical activity at specific times of day was 
associated with increased physical functions
1. Rapid gait speed: 8AM, 9:30AM, 2:30-5PM
2. Normal gait speed: 9-10:30AM, 3-4:30PM
3. Single leg stand: 9-10:30AM
4. Chair stand: 9:30-11:30AM, 3-6PM
5. 6-min walk: 3-6:30PM
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Objectives

Aim 2: Investigate the functional associations between the 
baseline physical activity features and the physical function 
at two years.
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Functional Regression for Rapid Pace after 2 Years

Coefficient Estimate SE t value Pr(>|t|)

(Intercept) 1.013 0.181 5.611 3.50e-08

Baseline RP* 0.673 0.042 15.969 < 2.00e-16

Male Sex 0.046 0.030 1.511 0.13

Age* -0.006 0.001 -4.560 6.58e-06

BMI -0.006 0.003 -1.711 0.09

White Race 0.056 0.052 1.070 0.29
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Estimated Coefficient Function for Rapid Pace Change
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Findings of Aim 2

No significant association between baseline physical 
activity and physical functions after 2 years.
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Conclusion

Functional data analysis (FDA) provides new insight 
into the relationship between minute-by-minute daily 
activity and physical functions.
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Part II: Dynamic predictions in Bayesian 
functional joint models for longitudinal 
and time-to-event data: An application 
to Alzheimer’s disease
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Alzheimer’s Disease (AD)
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• A neurodegenerative disorder of the brain and No. 1 leading 
cause of dementia.

• No disease-modifying treatments for AD.
• The most expensive disease in America.
• In 2018, 5.8 million American with AD and $277 billion in 

payment (1.35% of 2018 GDP!).
• The number of Americans with AD will reach 7.7 million by 

2030 and the corresponding total cost of care for AD will 
increase to $1.08 trillion each year.



NIH All of US Research Program
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Key Scientific Questions
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Quote from NIH All of US Research Program:
• Develop ways to measure risk for a range of diseases based 

on environmental exposures, genetic factors and interactions 
between the two

• Discover biological markers that signal increased or 
decreased risk of developing common diseases.

The tool is Personalized Risk Prediction!



Our Research Question
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•Objective: To develop a prognostic model, based 
on multivariate longitudinal markers, for predicting
progression-free survival in patients with mild 
cognitive impairment.



Predictive Models
• Most of the predictive models are static model, e.g., 

logistic regression, Cox model.
• Pros

–Simple
–Low computing cost

• Cons
–Prediction can not be updated in a real-time fashion.
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Dynamic Prediction
• What is dynamic prediction?

–Predictions are conducted on a real-time basis so that 
the predictions can be updated with new data.

• Why is it important?
1. Predict patients prognoses and make medical 

decisions in a real-time fashion.
2. Answer important predictive questions:
For a particular person, what are the most likely 

outcome trajectories in the next 6 months?
What is the risk of developing AD?

3. Enable personalized prevention, treatment, and care.
32



ADNI Study
• Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
study: a longitudinal observational study 
investigating whether serial brain imaging, clinical, 
and neuropsychological assessments can be 
combined to measure the progression of AD.

• Focus on 355 MCI patients who started from ADNI-
1 and were reassessed at 6, 12, 18, 24, 36 months.

• 180 patients were diagnosed with AD (survival 
event) and 175 had stable MCI over a mean follow-
up period of 2.3 years and 4.2 years, respectively.
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Data Source: Longitudinal Markers
• Longitudinal AD Assessment Scale-Cognitive (ADAS-

Cog) score and Hippocampal volume (HV) are the 
strongest predictors of AD conversion from MCI in 
neurocognitive and neuroimaging domain.

• Enormous information lost occurs when the high 
dimensional image data are reduced to a single volume.

• Surface-based morphology analysis retains more 
information about Hippocampus atrophy.

–Hippocampal radial distance (HRD): the distance from 
the medial core of the hippocampus to points on the 
surface and quantifies the thickness of hippocampus 
relative to its center line. 34



Longitudinal ADAS-Cog

Longitudinal trajectories of ADAS-Cog 13: 50 MCI patients from the ADNI study35



Hippocampus Image Processing
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Application to the ADNI Study
Functional Joint Model (FJM) structure
• Survival sub-model: time from first visit to AD diagnosis
• Longitudinal sub-model: ADAS-Cog 13
• The baseline hippocampal radial distance (HRD) as the 

functional predictor.
• Baseline hippocampal volume, age, gender, years of 

education and presence of the apolipoprotein E (APOE) 
ε4 allele as scalar covariates.
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Model Comparison
• Compare the two candidate models by time-dependent 

AUCs, at different time points over the follow-up period.
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Parameter Estimation 
• Parameter estimates from model FJM with HRD in both 

longitudinal and survival sub-models.
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Estimated coefficient functions for 
HRD in the sub-models are mapped 
back to the hippocampal surfaces.



Dynamic prediction for new patients using FJM
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Dynamic prediction for new patients using FJM
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Conclusion
• Including baseline HRD as a functional predictor in 
the dynamic prediction framework can improve the 
predictive performance.

• Regional radial atrophy in the CA1 subfield and the 
subiculum subfield is a good predictor of AD 
progression among patients with MCI.

• The proposed FJM can readily include multiple 
brain regions, and even genotype profiles, as 
functional predictors.
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Q: What are the application 
areas of Functional Data 
Analysis (FDA)?  
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When to use FDA? 
•When you have functions (1D, 2D, 3D, or 4D)
•Longitudinal data: sparse functional data
•Multivariate longitudinal data
•Longitudinal –omics data: high-dimensional 
sparse functional data
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Q: How to do Functional Data 
Analysis (FDA)?  
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Available software
• refund package in R is the best.
• Talk to a statistician with strong expertise in Functional 

Data Analysis. 
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