

"BIG Pediatric Cancer Genomic Data: Discovery, Precision Medicine, and Data Sharing"

Jinghui Zhang

Member and Chair

Department of Computational Biology

St. Jude Endowed Chair in Bioinformatics

St. Jude Graduate School of Biomedical Sciences

St. Jude Children's Research Hospital

Saving children.

BIG Pediatric Cancer Genomic Data: Discovery, Precision Medicine, and Data Sharing

Jinghui Zhang, PhD Chair, Member Department of Computational Biology

BIG Data & Precision Medicine

Adapted from https://pct.mdanderson.org/#/

Pediatric Cancer Genome Project (PCGP) 2010-2013

Leukemia **12 Subtypes**

Solid Tumors 7 Subtypes

Brain Tumors 5 Subtypes

700 Tumor/Normal WGS Pairs 1500 WES & 1000 RNA-seq >2,000,000 lesions verified

35 High-Impact Published Studies on Pediatric Cancer Driver Genes

Pan-cancer Study of NCI TARGET

Daniela S. Gerhard Stephen P. Hunger (ALL) Soheil Meshinchi (AML) John M. Maris (Neuroblastoma) Elizabeth J. Perlman (Wilms Tumor) Ching C. Lau (Osterosarcoma) Paul S. Meltzer (Osterosarcoma) **TARGET Analysis Working Group (TAWG)**

Letter | OPEN

Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours

Xiaotu Ma, Yu Liu [...] Jinghui Zhang 🔤

More detail >>

More detail >>

Susanne N. Gröbner, Barbara C. Worst [...] Stefan M. Pfister 🐱

Pan-cancer Analysis of WGS, WES and RNA-seq of **1,699 Patient Samples**

82 additional driver genes with P/LP variants

Biological Processes Altered in Pediatric Cancer

		T-ALL	B-ALL	AML	NBL	WT	
	Transcription	87.7%	71.4%	60.4%	0.7%	24.7%	1
	Cell cycle	82.5%	53.0%	9.6%	20.6%	17.3%	
Proportion of	Epigenetics	53.7%	38.7%	34.0%	17.6%	12.3%	
Genes Unique to	NOTCH	78.4%	1.8%				
Pediatric Cancer	RAS	13.1%	30.0%	28.4%	4.4%	3.7%	
	JAK-STAT	20.2%	22.6%	9.1%			
	Tyrosine kinase	11.2%	10.1%	20.8%	14.0%	1.2%	
Proportion of	MYC	16.1%	3.7%	4.1%	27.2%	13.6%	1
Genes Shared	PI3K	28.0%	2.3%	1.0%	0.7%	2.5%	
with Adult Cancer	Ubiquitin	19.4%	9.7%	0.5%			
	Ribosome	12.7%	0.5%				
	Cohesin	2.2%	4.2%	3.0%	3.7%	2.5%	
	Splicing	2.2%	0.5%	3.0%		1.2%	
	DNA recombination		6.5%				
	Wnt					13.6%	
	RNA processing	2.2%	0.9%	1.0%			
	miRNA					12.3%	
	G protein	1.5%	0.9%	0.5%		1.2%	
	Metabolic	0.4%	0.5%	3.0%			
	DNA repair		2.8%		1.5%		
	MAPK	0.4%	0.5%			1.2%	

5.3%

31.6%

10.5%

Mutational Signatures of Pediatric Cancers

List of samples with UV signatures

USI	Gender	Race	Age at Dx	ALL subtype
PAPLDL	Female	Hispanic	7	iAMP21
PASFTL	Female	Caucasian	4	Hyperdiploid
PAPIJM	Male	Caucasian	11	Hyperdiploid
PAPDUF	Male	Caucasian	3	Hyperdiploid
PAPNMY	Male	Caucasian	14	iAMP21
CAAABF	Male	Caucasian*	3	Hypodiploid
PANXDR	Male	Caucasian*	3	Hyperdiploid
PAPDWT	Female	Asian	6	Hyperdiploid

*: inferred from genomics data

Ludmil Alexandrov

Acknowledgement

- **Zhang Lab**
 - Xiaotu Ma
 - <u>Yu Liu</u>
 - Yanling Liu
 - Xin Zhou
 - Yongjin Li _
 - Michael Edmonson

NCI TARGET Team \bullet

- Daniela S. Gerhard
- **Steve Hunger**
- Soheil Meshinchi
- John Maris
- Ching C. Lau
- Paul S. Meltzer
- TARGET Analysis Working Group (TAWG)

- Gawad Lab
 - Chuck Gawad
 - Veronica Gonzalez-Pena

Comp. Bio. Genomics Lab

- John Easton
- Li Dong

• Comp. Bio. Software Group

- Michael Rusch
- Mark Wilkinson
- Edgar Sioson

Bio. Stat. Department •

- Stan Pounds
- Xueyan Cao

Other Collaborators

- Ludmil Alexandrov (UCSD)
- Robert Huether (Tempus)

Drug Resistant Mutations in Relapsed Pediatric Acute Lymphoblastic Leukemia

A collaboration with Shanghai Children's Medical Center (SCMC)

- > 103 patients with very early, early and late relapse were analyzed by WGS and RNA-seq of diagnosis (D)-relapse (R)-germline trio
- Relapse-specific mutations enriched in 12-genes known to be involved in drug response

Li, Brady et al, Blood 2020

St. Jude Children's **Research Hospital**

Candidate Mutagenic Agents for Novel Signatures

St. Jude Children's

Research Hospital

A New Model for ALL Relapse

de novo resistance not observed in ALL

chemo-selection very early relapses

New Model Persistent clones with chemo-induced mutations early & late relapses

Li, Brady, Ma, et al, Blood, 2020

Acknowledgement

- Shanghai Children's Medical Center
 - **Benshang Li**
 - Shuhong Shen —
 - Jingyan Tang
 - **Bin-bing Zhou**
- **Tianjin Institute of Hematology**
 - Yingchi Zhang
 - Xiaofan Zhu
- Anhui Medical University
 - Ningling Wang ____

- St Jude
 - Sam Brady
 - Yongjin Li
 - Xiaotu Ma
 - Yu Liu
 - James Downing
 - Ching-Hon Pui
 - Jun J. Yang
 - Jinghui Zhang
 - 9 Additional Scientists
- Princeton University
 - Matthew Myers
 - Ben Raphael

Finding cures. Saving children.

Li, Brady, Ma, et al, Blood, 2020

Clinical Genomics

Clinical Genomics: Timeline

ClinGen Pipeline for 3-Platform Sequencing

Pipelines developed from 78 cases in a pilot study

Rusch et al, Nat. Comm. 2018

Therapy Change Based on ClinGen Data

- Child with metastatic melanoma who had failed multiple therapies
- Tumor analyzed by St. Jude 3-Platform Sequencing

- Activates MAP Kinase signaling independent of BRAF (unlike) most melanomas)
- Blocked the pathway downstream of BRAF using a MEK inhibitor (trametinib) - total response but later developed resistance

Recurrent Screening by RNA-seq of 49 FFPE Spitzoid Melanoma

MAP3K8 has the highest mutation prevalence (33%)

MAP3K8	33%	
ALK	22%	
BRAF	4%	
RAF1	4%	
ROS1	4%	
NTRK1	4%	
PRKCA	4%	
NRAS	4%	
MITF	2%	
PRKCB	2%	
NTRK3	2%	
ARAF	2%	
RET	2%	
MAP2K1	2%	
CTNNB1	2%	
	Fu	sion Truncation Missense (Hotspot

Truncations/fusions cause loss of exon 9

Collaboration with Richard Lee for testing new compounds targeting MAP3K8

Newman et al, Nature Medicine 2019

472 TCGA melanoma

Data Sharing & Visualization on St Jude Cloud

← → C

Advancing Cures Through Data and Discovery

PEDIATRIC CANCER

Data from a variety of childhood cancers, including hematological cancers, brain tumors and solid tumors.

Learn More

CANCER SURVIVORSHIP

High-quality genomic, clinical and patient-reported data from pediatric cancer survivors.

Learn More

NON-CANCEROUS DISEASES

Genomic and clinical data from non-malignant diseases, including sickle cell disease.

Learn More

St. Jude Children's Research Hospital

Standard Download-based Data Sharing Model

Cloud Data Sharing with Accessible Computing Infrastructure

St. Jude Children's Research Hospital

> Pediatric Cancer Genomic Analysis Visualization

DNAnexus^{*} Secure cloud data host

Azure cloud Computing

Visualization

World's Largest Pediatric Cancer Genomic Data

Retrospective	Research Studies	Subjects	Sequencing Type (#Sa
PCGP	[<i>Tumor / Normal</i>]	1,610	WGS (1400), WES (1536), F
Clinical Pilot	[<i>Tumor / Normal</i>]	78	WGS (156), WES (156), RN
St. Jude LIFE	[Germline]	4,833	WGS (4834), WES (3322)
CCSS	[Germline]	2,912	WGS (2912)
SGP	[Germline]	807	WGS (807)

Prospective Clin	ical Sequencing		
Genomes 4 Kids	[Tumor / Normal]	299	WGS (520), WES (559), RN
Clinical Genomics	[Tumor / Normal]	659	WGS (983), WES (1344), RI

Total	11,223	WGS (11,612), WES (6,917)
-------	--------	---------------------------

Aseq (254)

NAseq (690)

), RNAseq (1,927)

Real-time Clinical Genomics (RTCG) Streaming Enable Immediate Research

RTCG Pipeline for Regular Data Upload

Delaram Rahbarinia

An Example of Online Analysis: Perform Mutational **Signature Analysis on SJCloud**

Percent contribution (no. mutations) across all B-ALL patients

Engage St Jude Researchers During COVID-19

St. Jude Children's **Research Hospital**

Use general case: in an attempt to evaluate the performance of detect the subclonal SNV/Indels by using MSKCC's cfDNA data as a training set, the Ma lab uploaded the MSK data to SJCloud and was able to correct an error in the original data by curating the data via Cloud access

General Usage of St. Jude Cloud

- Carry out omics-based computation on St. Jude Cloud, removing the need for VPN or cluster access.
- New, remote-working focused quickstart guide including:
 - How to upload uploading data from cluster/laptop to cloud.
 - How to run production-grade apps at a large-scale using the cloud.
 - How to perform ad-hoc work using interactive nodes in the cloud (still in development, created in response to COVID-19).
 - How to visualize NGS data in IGV and the new GenomePaint BAM viewer (still in development, created in response to COVID-19).
- New support Slack channel: #stjudecloud-helpdesk (visit the guide on how to join the channel).
- Available to all researchers

COVID-19 Discovery Program

- Everything in "General usage", plus
- Sponsored compute and storage costs for your workloads in the cloud.
- Software engineering support (up to some limit that is jointly set).
- Weekly meeting with cloud team to ensure your research is moving forward effectively.
- Limited availability, by application only.

RNAIndel: An example of using SJCloud data for methods development

- **RNA-seq data are generated routinely for research and clinical testing** due to low sequencing cost and data storage
- Expressed variants are more valuable biomarkers than DNA variant
- Small insertions/deletions (indels) are more challenging to model

RNAIndel Computation Framework

Constructing the Training Set using SJCloud Data

765,475 labeled RNA-Seq indels

>1-nt indel

Features Distinct for Somatic and Germline Indels

Performance in Pediatric and Adult Cancers

	Tumor	N	Library	ReadLen	Sequencer	Somatic	Indels*	TPR	Media	n #FP/Sa	mplê	Med
									А	В	С	per s
1	Pediatric	77	TotalRNA	100	HiSeq2000or 2500	s	17	0.882	3		3	
						m	40	0.975	4		3	
2	AML	158	Poly-A	75	HiSeq2000	S	22	0.954	2		1	1
						m	61	0.984	2		2	
3	NSCLC	90	Poly-A	100	HiSeq1500	S	97	0.887	6	3	4	
						m	68	0.941	7	4	4	
4	RCC	91	Poly-A	50	HiSeq2000	\$	130	0.877	8	5	5	
						m	81	0.889	8	2	2	
5	COAD (Hyper)	29	Poly-A	75	GAIIX	S	120	0.392	20		20	
						m	53	0.953	11		10	
	COAD (NonHyper)	102				s	30	0.9	4		3	
						m	14	1.000	4		2	

□ NSCLC: Non-small cell lung cancer from Nanjing study Pediatric: 20 pediatric tumor types from St Jude **Clinical Sequencing Pilot Study RCC:** Renal cell carcinoma from TCGA study AML: Acute myeloid leukemia from TARGET study **COAD:** Colon adenocarcinoma from TCGA study

ian indels ample

- 2318
- 311
- 1036
- 202
- 3171
- 394
- 4303
- 510
- 999
- 141
- 466

- 128
- Finding cures. Saving children.

Low frequent driver mutations in highly expressed genes can be "rescued" from RNA-Seq analysis

Confirmed Indels from AML Test Data Set

ID	Gene	AAChange	VAF	500xTargeted
ΡΑΚΤϹΧ	EP300	Y207fs	0.102	\checkmark
PANLIN	CEBPA	P23fs	0.167	\checkmark
PAPVDV	RAD21	D543fs	0.021	\checkmark
PARSHM	KIT	Y418_D419>Y	0.148	\checkmark
PASWPT	CREBBP	S1767fs	0.012	\checkmark

Alidation

Hagiwara et al, Bioinformatics 2020 https://github.com/stjude/RNAIndel

St. Iude Children's **Research Hospital**

Advance the Understanding and Treatment of **Pediatric Cancer and Other Catastrophic Diseases**

Advancing Cures Through Data and Discovery

