Quantitative In-vivo Imaging of the Impact of Cancer Therapy on the Normal Pediatric Brain

Wilburn E. Reddick, Ph.D.

Diagnostic Image and Signal Processing Laboratory Division of Translational Imaging Research Department of Radiological Sciences

The Clinical Problem

- Acute lymphoblastic leukemia (ALL) is the most common childhood cancer
 - Affecting 2,400 children annually in the US
 - Young age at diagnosis and high survival rate
- Brain Tumors are the most common solid tumors of childhood
 - Affecting 3,110 children annually in the US
 - Most common cause of cancer related death in children
 - High rate of severe morbidity

RJ Gilbertson

Source: CBTRUS and SEER

Increasing Importance of Neurotoxicity

Independent Research Program Probing Substrates of Neurotoxicity

Basic Research Focus: Development of innovative algorithms and methods to quantify the structure and integrity of cerebral white matter *in vivo*

Clinical Research Focus: Use non-invasive imaging technology to quantify neurostructural changes resulting from radiological or pharmacological insult

Ultimate Goal: To assist in the development of therapy that would prevent, mediate, or intervene to minimize impact of neurotoxicity in survivors of pediatric cancer

Translational Imaging Research

Basic Research

Image Registration and Fusion **RF** Correction Segmentation Volume of Interest Analyses **Diffusion and Perfusion** Clinical Research (BT) **Historical Background** Most Recent Results **Ongoing Studies** Clinical Research (ALL) Most Recent Results **Ongoing Studies**

3D Affine Registration

Within an examination

Between examinations

Fusion of RT Dose with Segmented MR

TE Merchant

Bias Field Correction (in plane)

(Ji et al. MRM [in prep], 2005)

Bias Field Correction (between planes)

Kohonen Self-Organizing Map (Segmentation)

Learning Algorithm $\Delta weight_{i,j} = (neigh(iter))^2 [input_j - weight_{i,j}]$ $neigh(iter) = \eta * \exp\left[\frac{-(x^2 + y^2)}{2 * \sigma^2}\right]$ $\eta = 0.005 \overline{iter_{max}}$ $\sigma = \Im \left(\begin{array}{c} \Box & \frac{iter}{iter_{\max}} \\ 0.4 & \frac{iter}{iter_{\max}} \end{array} \right) \Box$

(Reddick et al. IEEE-TMI, 1997)

SOM of Normal Examination

T1 T2 PD FLAIR

SOM

Intra-class correlations for N =14White matterri = 0.91 (p < 0.01)Gray matterri = 0.95 (p < 0.01)CSFri = 0.98 (p < 0.01)

(Reddick et al. MRM, 2002)

SOM of Abnormal ExaminationT1T2PDFLAIR

SOM

(Reddick et al. MRM, 2002)

Additional Refinements

FLAIR SOM-02 SOM-03 SOM-04

Kappa measure of agreement (N = 15) Obs 1 0.651 0.653 0.744 Obs 2 0.602 0.615 0.699

(Glass et al. *MRM*, 2004)

Index vs Expanded Sampling

Expand Coverage

3D Visualization

(Mulhern et al. Lancet Onc, 2004)

Regional Analysis

Prefrontal

Frontal Parietal / Mid-Temporal Parietal / Occipital

(Mulhern et al. JINS, 2004)

Quantifying White Matter Integrity

RJ Ogg FLAIR

ADC

Quantifying White Matter Perfusion

RJ Ogg

Translational Imaging Research

Basic Research

Image Registration and Fusion **RF** Correction Segmentation Volume of Interest Analyses **Diffusion and Perfusion** Clinical Research (BT) **Historical Background** Most Recent Results **Ongoing Studies** Clinical Research (ALL) Most Recent Results **Ongoing Studies**

Why Normal-Appearing White Matter?

Two age-matched groups treated for brain tumors of the Posterior Fossa

Variable	MB (N=18)	LGA (N=18)	Significance
FSIQ	82.0 <u>+</u> 10.9	92.9 <u>+</u> 15.7	P=0.026
ICV	82.5 <u>+</u> 5.4	85.2 <u>+</u> 6.0	NS
White	21.4 <u>+</u> 4.4	24.7 <u>+</u> 5.7	P=0.008
Gray	52.6 <u>+</u> 5.1	54.3 <u>+</u> 6.1	NS
CSF	8.1 <u>+</u> 4.0	6.1 <u>+</u> 4.5	NS

RK Mulhern

(Reddick et al. MRI, 1998)

A New Understanding of Decreasing IQ

(Palmer et al. JCO, 2001)

Linking Therapy & Neurocognitive Deficits

Cross sectional study of Medulloblastoma survivors (N=42)

Age at irradiation significantly associated with FSIQ $(R^2 = 0.170; P = 0.006; controlled for time since irradiation)$

Mediational model: ~70% of association explained by Normal Appearing White Matter

(Mulhern et al. JCO, 2001)

Developmental Model

Model explains:

~ 60% of variance in reading
~ 60% of variance in spelling
~ 80% of variance in math

(Reddick et al. Cancer, 2003)

Most Recent Results

Longitudinal study of 324 MR exams from 52 subjects treated for Medulloblastoma All received 36 Gy CSI 19 had shunts placed Median age @ irradiation 8.3 yrs (3.4 to 20.0 yrs) Median time since irradiation 2.5 yrs (-0.2 to 7.9 yrs) Cross-sectional study of a subset of 19 patients age similar to controls and without shunts Single most recent MR Age at examination 13.0 ± 3.1 yrs 26 healthy sibling controls imaged once Age at examination 12.6 ± 3.4 yrs

Longitudinal Brain Volume Development

Younger at RT

Older at RT

(Reddick et al. Neuro Onc, 2005)

Longitudinal Brain Volume Development

(Reddick et al. Neuro Onc, 2005)

Longitudinal Brain Volume Development

(Reddick et al. Neuro Onc, 2005)

Translational Imaging Research

Basic Research

Image Registration and Fusion **RF** Correction Segmentation Volume of Interest Analyses **Diffusion and Perfusion** Clinical Research (BT) **Historical Background** Most Recent Results **Ongoing Studies** Clinical Research (ALL) Most Recent Results **Ongoing Studies**

Most Recent Results

Longitudinal study of 164 MR exams from 45 subjects treated for ALL on Total 14

	Low Risk	Standard / High Risk	
Number of Subjects			
Post 1 IV-MTX	21	23	
Post 4 IV-MTX	20	21	
Post 7 IV-MTX	21	21	
End of Therapy	20	17	
Gender			
Male	10	11	
Female	12	12	
Age at Diagnosis (years)	5.0 ± 2.7	9.2 ± 4.8	

Prevalence of LE

Standard / High-Risk Low-Risk

(Reddick et al. AJNR [in press], 2005)

Transient vs. Persistent

 Week 5
 20
 45
 132
 240

 KJ Helton

 240

 240

Extent of LE

Week on Protocol

(Reddick et al. AJNR [in review], 2005)

Intensity of LE

Standard / High-Risk Low-Risk

(Reddick et al. AJNR [in review], 2005)

Relationship Between Intensity Measures

(Reddick et al. AJNR [in review], 2005)

Translational Imaging Research Summary

Basic Research

 Developed essential novel image processing capabilities which were optimized for specialized clinical research applications

 Continue to develop innovative algorithms and methods to quantify the structure and integrity of cerebral white matter *in vivo*

Clinical Research

 Used non-invasive imaging technology to quantify neurostructural changes resulting from radiological or pharmacological insult and related these changes to neurocognitive performance

Translational Imaging Research Summary

Building on extensive experience with MB

- New studies designed to combine radiation dosimetry maps with MR imaging measures of perfusion and diffusion
- Investigate the integrity of white matter microvasculature and axonal myelin
- Changes in these measures is hypothesized to precede more global changes in cerebral white matter volume
- 120 subjects with 1560 MR exams

Translational Imaging Research Summary

Building on preliminary experience with ALL

- Ongoing ALL study designed to test hypotheses that early changes in MR imaging measures are:
- predictive of later white matter changes
- proportionate to exposure to HDMTX
- related to CSF and plasma homocysteine
- predictive of treatment-induced neurocognitive deficits and diminished quality of life in survivors
- 300 subjects with 1200 MR examinations

Acknowledgements

Department of Radiological Sciences

- Dr. Robert Ogg
- Dr. Zuyao Shan
- Dr. Kathleen Helton
- Dr. Thomas Merchant

Div Trans Imag Res Div Trans Imag Res Div Diag Imaging Div Rad Onc

Institutional Collaborators

Dr. Amar Gajjar
Dr. Ching-Hon Pui
Dr. Raymond Mulhern

Dept of Hem/Onc

Dept of Hem/Onc

Div Behav Med

Acknowledgements

- John Glass
- Rhonda Simmons
- Greg Bernstein
- Kimberly Johnson
- Brian Taylor
- John Stagich
- Dr. Qing Ji
- Jinesh Jain
- Travis Miller

Sig Proc Supervisor

Sig Proc Res Assistant

Sig Proc Res Assistant

Sig Proc Res Assistant

POE Student

Project Leader

Software Engineer

Software Engineer

Systems Administrator