Quantitative In-vivo Imaging of the Impact of Cancer Therapy on the Normal Pediatric Brain

Wilburn E. Reddick, Ph.D.

Diagnostic Image and Signal Processing Laboratory
Division of Translational Imaging Research
Department of Radiological Sciences
The Clinical Problem

- **Acute lymphoblastic leukemia (ALL) is the most common childhood cancer**
 - Affecting 2,400 children annually in the US
 - Young age at diagnosis and high survival rate

- **Brain Tumors are the most common solid tumors of childhood**
 - Affecting 3,110 children annually in the US
 - Most common cause of cancer related death in children
 - High rate of severe morbidity

Source: CBTRUS and SEER
Increasing Importance of Neurotoxicity

% survival

1930 1950 1970 1990

ALL

CNS

Source: CBTRUS and SEER

RJ Gilbertson
Independent Research Program
Probing Substrates of Neurotoxicity

Basic Research Focus: Development of innovative algorithms and methods to quantify the structure and integrity of cerebral white matter *in vivo*

Clinical Research Focus: Use non-invasive imaging technology to quantify neurostructural changes resulting from radiological or pharmacological insult

Ultimate Goal: To assist in the development of therapy that would prevent, mediate, or intervene to minimize impact of neurotoxicity in survivors of pediatric cancer
Translational Imaging Research

- **Basic Research**
 - Image Registration and Fusion
 - RF Correction
 - Segmentation
 - Volume of Interest Analyses
 - Diffusion and Perfusion

- **Clinical Research (BT)**
 - Historical Background
 - Most Recent Results
 - Ongoing Studies

- **Clinical Research (ALL)**
 - Most Recent Results
 - Ongoing Studies
3D Affine Registration

Within an examination

Between examinations
Fusion of RT Dose with Segmented MR
Bias Field Correction (in plane)

(Ji et al. MRM [in prep], 2005)
Bias Field Correction (between planes)

Bias Field Correction (between planes)

PD Intensity (a.u.)

Section Number

0 5 10 15 20

Pre

Post
Kohonen Self-Organizing Map (Segmentation)

Learning Algorithm

\[\Delta \text{weight}_{i,j} = \left(\text{neigh}(\text{iter}) \right)^2 \left[\text{input}_j - \text{weight}_{i,j} \right] \]

\[\text{neigh}(\text{iter}) = \eta \exp \left[-\frac{\left(x^2 + y^2 \right)}{2 \sigma^2} \right] \]

\[\eta = 0.005 \frac{\text{iter}}{\text{iter}_{\text{max}}} \]

\[\sigma = 3 \left(0.4 \frac{\text{iter}}{\text{iter}_{\text{max}}} \right) \]

(Reddick et al. *IEEE-TMI*, 1997)
SOM of Normal Examination

Intra-class correlations for N = 14

White matter \(r_i = 0.91 \) (\(p < 0.01 \))
Gray matter \(r_i = 0.95 \) (\(p < 0.01 \))
CSF \(r_i = 0.98 \) (\(p < 0.01 \))

(Reddick et al. *MRM*, 2002)
SOM of Abnormal Examination

T1 T2 PD FLAIR

(Som et al. MRM, 2002)
Additional Refinements

<table>
<thead>
<tr>
<th>FLAIR</th>
<th>SOM-02</th>
<th>SOM-03</th>
<th>SOM-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs 1</td>
<td>0.651</td>
<td>0.653</td>
<td>0.744</td>
</tr>
<tr>
<td>Obs 2</td>
<td>0.602</td>
<td>0.615</td>
<td>0.699</td>
</tr>
</tbody>
</table>

Kappa measure of agreement (N = 15)

(Glass et al. MRM, 2004)
Index vs Expanded Sampling
Expand Coverage
3D Visualization

Regional Analysis

Prefrontal
Frontal
Parietal / Mid-Temporal
Parietal / Occipital

(Mulhern et al. JINS, 2004)
Quantifying White Matter Integrity

FLAIR SOM ADC FA
Quantifying White Matter Perfusion
Translational Imaging Research

- **Basic Research**
 - Image Registration and Fusion
 - RF Correction
 - Segmentation
 - Volume of Interest Analyses
 - Diffusion and Perfusion

- **Clinical Research (BT)**
 - Historical Background
 - Most Recent Results
 - Ongoing Studies

- **Clinical Research (ALL)**
 - Most Recent Results
 - Ongoing Studies
Why Normal-Appearing White Matter?

Two age-matched groups treated for brain tumors of the Posterior Fossa

<table>
<thead>
<tr>
<th>Variable</th>
<th>MB (N=18)</th>
<th>LGA (N=18)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSIQ</td>
<td>82.0 ± 10.9</td>
<td>92.9 ± 15.7</td>
<td>P=0.026</td>
</tr>
<tr>
<td>ICV</td>
<td>82.5 ± 5.4</td>
<td>85.2 ± 6.0</td>
<td>NS</td>
</tr>
<tr>
<td>White</td>
<td>21.4 ± 4.4</td>
<td>24.7 ± 5.7</td>
<td>P=0.008</td>
</tr>
<tr>
<td>Gray</td>
<td>52.6 ± 5.1</td>
<td>54.3 ± 6.1</td>
<td>NS</td>
</tr>
<tr>
<td>CSF</td>
<td>8.1 ± 4.0</td>
<td>6.1 ± 4.5</td>
<td>NS</td>
</tr>
</tbody>
</table>

(Reddick et al. *MRI*, 1998)
A New Understanding of Decreasing IQ

(Palmer et al. JCO, 2001)
Linking Therapy & Neurocognitive Deficits

Cross sectional study of Medulloblastoma survivors (N=42)

Age at irradiation significantly associated with FSIQ
($R^2 = 0.170; P = 0.006$; controlled for time since irradiation)

Mediational model: ~70% of association explained by Normal Appearing White Matter

(Mulhern et al. JCO, 2001)
Model explains: ~ 60% of variance in reading
~ 60% of variance in spelling
~ 80% of variance in math

Most Recent Results

- Longitudinal study of 324 MR exams from 52 subjects treated for Medulloblastoma
 - All received 36 Gy CSI
 - 19 had shunts placed
 - Median age @ irradiation 8.3 yrs (3.4 to 20.0 yrs)
 - Median time since irradiation 2.5 yrs (-0.2 to 7.9 yrs)

- Cross-sectional study of a subset of 19 patients age similar to controls and without shunts
 - Single most recent MR
 - Age at examination 13.0 ± 3.1 yrs

- 26 healthy sibling controls imaged once
 - Age at examination 12.6 ± 3.4 yrs

A Gajjar
Longitudinal Brain Volume Development

Younger at RT

Older at RT

(Reedick et al. *Neuro Onc*, 2005)
Longitudinal Brain Volume Development

Younger at RT

Older at RT

(Reddick et al. Neuro Onc, 2005)
Longitudinal Brain Volume Development

Longitudinal Brain Volume Development (Reddick et al. Neuro Onc, 2005)

p<0.001
Translational Imaging Research

- **Basic Research**
 - Image Registration and Fusion
 - RF Correction
 - Segmentation
 - Volume of Interest Analyses
 - Diffusion and Perfusion

- **Clinical Research (BT)**
 - Historical Background
 - Most Recent Results
 - Ongoing Studies

- **Clinical Research (ALL)**
 - Most Recent Results
 - Ongoing Studies
Most Recent Results

Longitudinal study of 164 MR exams from 45 subjects treated for ALL on Total 14

<table>
<thead>
<tr>
<th></th>
<th>Low Risk</th>
<th>Standard / High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 1 IV-MTX</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Post 4 IV-MTX</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Post 7 IV-MTX</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>End of Therapy</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Age at Diagnosis (years)</td>
<td>5.0 ± 2.7</td>
<td>9.2 ± 4.8</td>
</tr>
</tbody>
</table>
Prevalence of LE

Standard / High-Risk
Low-Risk

(Reddick et al. AJNR [in press], 2005)
Transient vs. Persistent

Week 5 20 45 132 240

KJ Helton
Proportion WM affected

- 35% (p = 0.002)
- 30% (p = 0.046)
- 25% (p = 0.010)
- 20%
- 15%
- 10%
- 5%
- 0%

Week on Protocol:
- 5
- 20
- 45
- 132

Standard / High-Risk
Low-Risk

(Reddick et al. AJNR [in review], 2005)
Intensity of LE

Standard / High-Risk
Low-Risk

(Reddick et al. AJNR [in review], 2005)
Relationship Between Intensity Measures

(Reddick et al. AJNR [in review], 2005)
Translational Imaging Research Summary

Basic Research

- Developed essential novel image processing capabilities which were optimized for specialized clinical research applications
- Continue to develop innovative algorithms and methods to quantify the structure and integrity of cerebral white matter *in vivo*

Clinical Research

- Used non-invasive imaging technology to quantify neurostructural changes resulting from radiological or pharmacological insult and related these changes to neurocognitive performance
Translational Imaging Research Summary

Building on extensive experience with MB

- New studies designed to combine radiation dosimetry maps with MR imaging measures of perfusion and diffusion
- Investigate the integrity of white matter microvasculature and axonal myelin
- Changes in these measures is hypothesized to precede more global changes in cerebral white matter volume
- 120 subjects with 1560 MR exams
Building on preliminary experience with ALL

- Ongoing ALL study designed to test hypotheses that early changes in MR imaging measures are:
 - predictive of later white matter changes
 - proportionate to exposure to HDMTX
 - related to CSF and plasma homocysteine
 - predictive of treatment-induced neurocognitive deficits and diminished quality of life in survivors
 - 300 subjects with 1200 MR examinations
Acknowledgements

Department of Radiological Sciences

- Dr. Robert Ogg Div Trans Imag Res
- Dr. Zuyao Shan Div Trans Imag Res
- Dr. Kathleen Helton Div Diag Imaging
- Dr. Thomas Merchant Div Rad Onc

Institutional Collaborators

- Dr. Amar Gajjar Dept of Hem/Onc
- Dr. Ching-Hon Pui Dept of Hem/Onc
- Dr. Raymond Mulhern Div Behav Med
Acknowledgements

- John Glass
 Sig Proc Supervisor
- Rhonda Simmons
 Sig Proc Res Assistant
- Greg Bernstein
 Sig Proc Res Assistant
- Kimberly Johnson
 Sig Proc Res Assistant
- Brian Taylor
 POE Student
- John Stagich
 Project Leader
- Dr. Qing Ji
 Software Engineer
- Jinesh Jain
 Software Engineer
- Travis Miller
 Systems Administrator