Skip to main content
P. David Rogers, PharmD, PhD, FCCP
P. David Rogers, PharmD, PhD, FCCP

P. David Rogers, PharmD, PhD, FCCP

Member, St. Jude Faculty

  • Chair, Department of Pharmacy and Pharmaceutical Sciences
  • St. Jude Endowed Chair in Pharmaceutical Sciences

Departments

Education

PharmD – University of Tennessee Health Science Center, Memphis, TN
MS – University of Mississippi Medical Center, Jackson, MS
PhD – University of Mississippi Medical Center, Jackson, MS
Residency – Regional Medical Center, Memphis, TN
Residency – University of Mississippi Medical Center, Jackson, MS
Fellowship – University of Mississippi Medical Center, Jackson, MS

Honors & Awards

  • 2005  Elected Fellow of the American College of Clinical Pharmacy
  • 2006-2020  First Tennessee Endowed Chair of Excellence in Clinical Pharmacy, University of Tennessee Health Science Center
  • 2012  Louis C. Littlefield Lecture, University of Texas at Austin College of Pharmacy
  • 2014  University of Tennessee Health Sciences Center Student Government Association Executive Council Excellence in Teaching Award
  • 2014-2020  Member, Drug Discovery and Mechanisms of Antimicrobial Resistance (DDR) NIH Study Section
  • 2016  Swintosky Distinguished Lecture, University of Kentucky College of Pharmacy
  • 2016  University of Tennessee Health Sciences Center Student Government Association Executive Council Excellence in Teaching Award
  • 2018  University of Mississippi Medical Center School of Graduate Studies in the Health Sciences Distinguished Alumnus Award
  • 2021  American College of Clinical Pharmacy Russell R. Miller Award
  • 2021  American College of Clinical Pharmacy Therapeutic Frontiers Lecture Award 
  • 2023  Elected Fellow of the American Academy of Microbiology

Research Interests

  • Improvement of antifungal pharmacotherapy
  • Understanding the molecular and genetic basis of antifungal drug resistance

Selected Publications

Ramírez-Zavala B, Hoffmann A, Krüger I, Schwanfelder S, Barker KS, Rogers PD, Morschhäuser J. Probing gene function in Candida albicans wild-type strains by Cas9-facilitated one-step integration of two dominant selection markers - a systematic analysis of recombination events at the target locus. mSphere 2024 Jul 30;9(7) PMCID: PMC11288041

Ramírez-Zavala, B Krüger Ines, Schwanfelder S, Barker KS, Rogers PD, Morschhäuser J. The zinc cluster transcription factor Znc1 regulates Rta3-dependent miltefosine resistance in Candida albicans. mSphere 2024 Jul 30;9(7) PMCID: PMC11288014

Xie J, Rybak JM, Martin-Vicente A, Guruceaga X, Thorn HI, Nywening AV, Ge W, Parker JE, Kelly SL, Rogers PD, Fortwendel JR. The sterol C-24 methyltransferase encoding gene, erg6, is essential for viability of Aspergillus species. Nat Commun 2024 May 20;2015(1)4261

Bergin S, Doorley LA, Rybak JM, Wolfe KH, Butler G, Cuomo CA, Rogers PD. Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. Antimicrob Agents Chemother. 2024 May 7:e0161923. 

Rybak JM, Xie J, Martin-Vicente A, Guruceaga X, Thorn HI, Nywening AV, Ge W, Souza ACO, Shetty AC, McCracken C, Bruno VM, Parker JE, Kelly SL, Snell HM, Cuomo CA, Rogers PD, Fortwendel JR. A novel secondary mechanism of action for triazole antifungals: induction of negative feedback regulation of HMG-CoA reductase. Nat Commun 2024 Apr 29;15(1):3642.

Doorley LA, Barker KS, Zhang Q, Rybak JM, Rogers PD. Mutations in TAC1 and ERG11 are major drivers of triazole antifungal resistance in clinical isolates of Candida parapsilosis. Clin Microbiol Infect 2023 Dec;29(12):1602.e1-1602.e7.

Nywening AV, Rybak JM, Rogers PD, Fortwendel JR. Mechanisms of triazole resistance in Aspergillus fumigatus. Environ Microbiol 2020 Dec;22(12):4934-4952. PMCID: PMC7828461

Vu BG, Stamnes MA, Li Y, Rogers PD, Moye-Rowley WS. The Candida glabrata Upc2A transcription factor is a global regulator of antifungal drug resistance pathways. PLos Genet 2021 Sep; 17(9):e1009582 PMCID: PMC8509923

Rybak MJ, Sharma C, Doorley LA, Barker KS, Palmer GE, Rogers PD. Delineation of the direct contribution of Candida auris ERG11 mutations to triazole resistance. Microbiology Spectrum 2021 Dec; 9(3):e0158521 PMCID: PMC8653815

Rybak JM, Barker KS, Munoz JF, Parker JE, Ahmad S, Mokaddas E, Abdullah A, Elhagracy RS, Kelly SL, Cuomo, Rogers PD. In vivo emergence of high-level resistance during treatment revelas the first identified mechanism of amphotericin B resistance in Candida auris. Clin Microbiol Infect 2021 Dec. doi:10.1016/j.cmi.2021.11.024 online ahead of print PMID:34915074

Olinger TL, Vu B, Murante D, Parker JE, Simonicova L, Doorley L, Stamnes MA, Kelly SL, Rogers PD, Moye-Rowley WS, Krysan DJ. Loss-of-function ROX1 mutations suppress the fluconazonole susceptibility of upc2A mutation in Candida glabrata, Implicating additional positive regulators of ergosterol biosynthesis. mSphere 2021 Dec. 22;6(6):e0083021 PMCID: PMC8694151

Doorley LA, Rybak JM, Berkow EL, Zhang Q, Morschhauser J, Rogers PD. Candida parapsilosis Mdr1B and Cdr1B are drivers of Mrr1-mediated clinical fluconazole resistance. Antimicrob Agents Chemother 2022 Jul 19;66(7)

Souza ACO, Ge W, Wiederhold NP, Rybak JM, Fortwendel JR, Rogers PD. hapE and hmg1 mutations are drivers of cyp51A-independent pan-triazole resistance in an Aspergillus fumigatus clinical isolate. Microbiol Spectr 2023 May 4:e0518822.

Doorley LA, Barker KS, Zhang Q, Rybak JM, Rogers PD. Mutations in TAC1 and ERG11 are major drivers of triazole antifungal resistance in clinical isolates of Candida parapsilosis. Clin Microbiol Infect 2023 Dec;29(12):1602.e1-1602.e7.

Rybak JM, Muñoz JF, Barker KS, Parker JE, Esquivel BD, Berkow EL, Lockhart SR, Gade L, Palmer GE, White TC, Kelly SL, Cuomo CA, Rogers PD. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio May 12;11(3):e00365-20, 2020.

Esquivel BD, Rybak JM, Barker KS, Fortwendel JR, Rogers PD, White TC. Characterization of the efflux capability and substrate specificity of Aspergillus fumigatus PDR5-like ABC transporters expressed in Saccharomyces cerevisiae. mBio Mar 24;11(2):e00338-20, 2020.

Balabathula P, Whaley SG, Janagam DR, Mittal NK, Mandal B, Thoma LA, Rogers PD, Wood GC. Lyophilized iron oxide nanoparticles encapsulated in amphotericin B: a novel targeted nano drug delivery system for the treatment of systemic fungal Iinfections. Pharmaceutics Mar 10;12(3):247, 2020.

Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother Feb 1;75(2):257-270, 2020.

Nishimoto AT, Whaley SG, Wiederhold NP, Zhang Q, Yates CM, Hoekstra WJ, Schotzingerc RJ, Garvey EP, Rogers PD. Impact of the major Candida glabrata triazole resistance determinants on the activity of the novel investigational tetrazoles VT-1598 and VT-1161. Antimicrob Agents Chemother Sep 23;63(10):e01304-19, 2019.

Nishimoto AT, Wiederhold NP, Flowers SA, Zhang Q, Kelly SL, Morschhäuser J, Yates C, Hoekstra W, Schotzinger R, Garvey E, Rogers PD. In vitro activities of the novel investigational tetrazoles VT-1161 and VT-1598 compared to the triazole antifungals against azole-resistant strains and clinical isolates of Candida albicans. Antibicrob Agents Chemother Mar 25;AAC.00341-19, 2019. doi: 10.1128/AAC.00341-19.

Rybak JM, Ge W, Wiederhold N, Parker J, Kelly SL, Rogers PD, Fortwendel JR. Mutations in hmg1, challenging the paradigm of clinical triazole resistance in Aspergillus fumigatus. MBio Apr 2;10(2):e00437-19, 2019. doi: 10.1128/mBio.00437-19. PMID: 30940706

Butts A, Reitler P, Nishimoto AT, DeJarnette C, Estredge L, Peters T, Veve M, Rogers PD, Palmer GE. A systematic screen reveals a wide variety of approved medications induce antifungal resistance in several Candida species. Antibicrob Agents Chemother Mar 11;AAC.00054-19, 2019. doi: 10.1128/AAC.00054-19.

Nishimoto AT, Zhang Q, Hazlett B, Morschhäuser J, Rogers PD. The contribution of clinically-derived mutations in the gene encoding the zinc cluster transcription factor Mrr2 to fluconazole antifungal resistance and CDR1 expression in Candida albicans. Antibicrob Agents Chemother Mar 4;AAC.00078-19, 2019. doi: 10.1128/AAC.00078-19.

Warrilow AG, Nishimoto AT, Parker JE, Price CL, Flowers SA, Kelly DE, Rogers PD, Kelly SL. The Evolution of Azole Resistance in Candida albicans Sterol 14α-Demethylase (CYP51) through Incremental Amino Acid Substitutions. Antimicrob Agents Chemother Feb 19;AAC.02586-18, 2019. doi: 10.1128/AAC.02586-18.

Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE, Rogers PD. Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother Feb 4;AAC.00057-19, 2019. doi: 10.1128/AAC.00057-19.

Ramírez-Zavala B, Manz H, Englert F, Rogers PD, Morschhäuser J. A hyperactive form of the zinc cluster transcription factor Stb5 causes YOR1 overexpression and beauvericin resistance in Candida albicans. Antimicrob Agents Chemother Nov 26;62(12):e01655-18, 2018. doi: 10.1128/AAC.01655-18.

Whaley SG, Zhang Q, Caudle KE, Rogers PD. Relative contribution of the ABC transporters Cdr1, Pdh1, and Snq2 to azole resistance in Candida glabrata. Antimicrob Agents Chemother Jul 23;AAC.01070-18, 2018.

Luna-Tapia A, Willems HME, Parker J, Tournu H, Barker KS, Nishimoto AT, Rogers PD, Kelly SL, Peters BM, Palmer GE. Loss of Upc2p inducible ERG3 transcription is sufficient to confer niche-specific azole resistance without compromising Candida albicans pathogenicity. mBio May 22;9(3);e00225-18, 2018.

Whaley SG, Caudle KE, Simonicova L, Zhang Q, Moye-Rowley WS, Rogers PD. Jjj1 Is a negative regulator of Pdr1-mediated fluconazole resistance in Candida glabrata. mSphere Feb 21;3(1);e00466-17, 2018.

Rybak JM, Dickens CM, Parker JE, Caudle K, Manigaba K, Whaley SG, Nishimoto A, Luna-Tapia A, Roy S, Zhang Q, Barker KS, Palmer GE, Sutter TR, Homayouni R, Wiederhold NP, Kelly SL, Rogers PD. Loss of C-5 sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of Candida parapsilosis. Antimicrob Agents Chemother 61:e00651-17, 2017.

Show More

Popp C, Hampe I, Hertlein T, Ohlsen K, Rogers PD, Morschhäuser J.  Competitive fitness of fluconazole-resistant, clinical Candida albicans strains. Antimicrob Agents Chemother 61:e00584-17, 2017.

Peters BM, Luna-Tapia A, Tournu H, Rybak JM, Rogers PD, Palmer GE. An azole tolerant endosomal trafficking mutant of Candida albicans is susceptible to azole treatment in a mouse model of vaginal candidiasis. Antimicrob Agents Chemother 61:e00084-17, 2017.

Whaley SG, Tsao S, Weber S, Zhang Q, Barker KS, Raymond M, Rogers PD. The RTA3 gene, encoding a putative lipid translocase, influences the susceptibility of Candida albicans to fluconazole. Antimicrob Agents Chemother 60:6060-6, 2016.

Berkow EL, Manigaba K, Parker JE, Barker KS, Kelly SL, Rogers PD. Multidrug transporters and alterations in sterol biosynthesis contribute to azole antifungal resistance in Candida parapsilosisAntimicrob Agents Chemother 59:5942-50, 2015.

Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD. The contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicansAntimicrob Agents Chemother 59:450-60, 2015.

Blankenship JR, Cheng S, Woolford CA, Xu W, Johnson TM, Rogers PD, Fanning S, Nguyen MH, Clancy CJ, Mitchell AP. Mutational analysis of essential septins reveals a role for septin-mediated signaling in filamentation. Eukaryot Cell 13:1403-10, 2014.

Vasicek EM, Berkow EL, Bruno VM, Mitchell AP, Wiederhold NP, Barker KS, Rogers PD. Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by fluconazole. Antimicrob Agents Chemother 58:6807-18, 2014.

Ramírez-Zavala B, Mogavero S, Schöller E, Sasse C, Rogers PD, Morschhäuser J. SAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump Mdr1. Antimicrob Agents Chemother 58:5102-10, 2014.

Whaley SG, Caudle KE, Vermitsky JP, Chadwick SG, Toner G, Barker KS, Gygax SE, Rogers PDUPC2A is required for high-level azole antifungal resistance in Candida glabrataAntimicrob Agents Chemother 58:4543-54, 2014.

Vasicek EM, Berkow EL, Flowers SA, Barker KS, Rogers PDUPC2 is universally essential for azole antifungal resistance in Candida albicansEukaryot Cell 13:933-46, 2014.

Mavrianos J, Berkow EL, Desai C, Pandey A, Batish M, Rabadi MJ, Barker KS, Pain D, Rogers PD, Eugenin EA, Chauhan N. Mitochondrial two-component signaling systems in Candida albicansEukaryot Cell 12:913-22, 2013.

Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschhäuser J, Rogers PD. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicansEukaryot Cell 11:1289-99, 2012.

Ofir A, Hofmann K, Weindling E, Gildor T, Barker KS, Rogers PD, Kornitzer D. Role of a Candida albicans Nrm1/Whi5 homolog in cell cycle gene expression and DNA replication stress response. Mol Microbiol 84:778-94, 2012.

Sasse C, Schillig R, Dierolf F, Weyler M, Schneider S, Mogavero S, Rogers PD, Morschhäuser J. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicansPLoS One 6:e25623, 2011.

Schubert S, Popp C, Rogers PD, Morschhäuser J. Functional dissection of a Candida albicans zinc cluster transcription factor, the multidrug resistance regulator Mrr1. Eukaryot Cell 10:1110-21, 2011.

Schubert S, Barker KS, Znaidi S, Schneider S, Dierolf F, Dunkel N, Aïd M, Boucher G, Rogers PD, Raymond M, Morschhäuser J. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicansAntimicrob Agents Chemother 55:2212-23, 2011.

Mogavero S, Tavanti A, Senesi S, Rogers PD, Morschhäuser J. Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1. Antimicrob Agents Chemother 55:2061-6, 2011.

Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell 10:373-83, 2011.

Last update: August 2024

Close