About the Blanchard Lab

There are critical links between structure and function across many biochemical systems. Complex assemblies of molecules are transiently bound to and regulated by specific factors. Our laboratory is interested in identifying the rules that govern these interactions, and how they might be influenced by small molecule-based therapies. Our work aims to reveal the molecular basis of function and regulation to help inform improved disease therapies.

About the Blanchard Lab

Different conformational states of the bacterial ribosomal complex during translocation. Animation By: Zhaowen Luo

See the Publication

Our research summary

To support life, biological molecules must rapidly transact with diverse cellular components and efficiently navigate functionally distinct native state conformations to carry out their physiological functions. Our team therefore seeks to develop methodological approaches to gain direct, quantitative insights into the timing and role of these compositional and conformational changes and how these events govern function and regulation.   

We explore structure-function relationships in biomolecules using genetic, biochemical, spectroscopic and structural techniques, where the focus is to develop a quantitative framework to explain function. A central endeavor is to bridge the gap between different static structures of biomolecules obtained through X-ray crystallography and cryo-electron microscopy and the dynamic transactions of individual biomolecules.  Research projects in our laboratory delve into the mechanisms of protein synthesis, signaling and transport across cellular membranes, and virus–host cell engagement at both the ensemble and single-molecule scales. Such efforts include collaborative studies on the mechanisms of fidelity during protein synthesis from messenger RNA; how directional transport of small-molecule ligands across membranes is achieved; conformational transitions in HIV-1 Env and SARS-CoV-2 spike and how they relate to engagement with host cells and recognition by antibodies; and physiological regulation of the conformational dynamics and oligomerization of G protein–coupled receptors (GPCRs). 

Blanchard Lab

Within each of these areas, our group strives to advance technological developments towards quantitative, physical descriptions of biomolecular function. Key to our progress have been advances in microscope instrumentation and in the development of self-healing organic fluorophores, which have enabled increased spatial and temporal resolution as well as noise reduction in our measurements. Computational and engineering initiatives have also played a pivotal role in leading our studies towards automated experimental pipelines, data analysis options and drug discovery initiatives.  

About the Blanchard Lab

Selected Publications

About Scott Blanchard

Dr. Blanchard’s contributions to structural biology and biophysics began when he demonstrated that the ribosome and translational mechanisms are amenable to single-molecule interrogations. After more than a decade at Weill Cornell Medicine, where he also served as Associate Director of the Tri-Institutional PhD Program in Chemical Biology, Dr. Blanchard joined the St. Jude faculty in 2019. In addition to his role as Principal Investigator, Dr. Blanchard also oversees the Center for Single-Molecule Imaging, a critical resource for his, and other labs, across the institution.

Scott C. Blanchard, PhD

The team

A diverse team of scientists, with expertise ranging from theoretical and synthetic chemistry, to visual engineering, to genetic and molecular biology.

Explore Career Opportunities in Structural Biology

We are currently recruiting!

Contact us

Scott C. Blanchard, PhD
Structural Biology

MS 311, Room D1007D
St. Jude Children’s Research Hospital

262 Danny Thomas Place
Memphis, TN, 38105-3678 USA
901-595-1927 Scott.Blanchard@stjude.org

Follow Us

262 Danny Thomas Place
Memphis, TN, 38105-3678 USA